I METODI DI INTEGRAZIONE

In questo paragrafo verranno illustrati i vari metodi di integrazione che, pur non costituendo un procedimento generale per effettuare l’integrazione indefinita, permettono senz’altro di calcolare gli integrali indefiniti di estese classi di funzioni.

a) **INTEGRAZIONE PER SOMMA E DECOMPOSIZIONE**
Tale metodo consente di decomporre la funzione $f(x)$ da integrare nella somma di più funzioni $f_1(x), f_2(x), ..., f_n(x)$ che si sappiano già integrare. Ne segue che:

$$\int f(x)\,dx = \int f_1(x)\,dx + \int f_2(x)\,dx + ... + \int f_n(x)\,dx$$

dove $f_1(x), f_2(x), ..., f_n(x)$ sono funzioni facilmente integrabili.

ESEMPI

α) \[\int (2x^3 + 3x^2 - x + 1)\,dx = 2 \int x^3\,dx + 3 \int x^2\,dx - \int x\,dx + \int \frac{x^4}{2} + x^3 - \frac{x^2}{2} + x + c \]

β) \[\int \frac{1+x}{x^2}\,dx = \int \frac{1}{x^2}\,dx + \int \frac{x}{x^2}\,dx = \int x^{-2}\,dx + \int \frac{1}{x}\,dx = -\frac{1}{x} + \log|x| + c \]

γ) \[\int \frac{x}{x-1}\,dx = \int \frac{x-1+1}{x-1}\,dx = \int \frac{x-1}{x-1}\,dx + \int \frac{1}{x-1}\,dx = \int dx + \int \frac{1}{x-1}\,dx = x + \log|x-1| + c \]

δ) \[\int \frac{1+x}{1+x^2}\,dx = \int \frac{1}{1+x^2}\,dx + \int \frac{x}{1+x^2}\,dx = \arctan x + \int \frac{2x}{2(1+x^2)}\,dx = \arctan x + \frac{1}{2} \log(1+x^2) + c = \arctan x + \frac{1}{2} \log(1+x^2) + c \]

ε) \[\int \sin^2 x\,dx = \int \frac{1-\cos 2x}{2}\,dx = \frac{1}{2} \int (1-\cos 2x)\,dx = \frac{1}{2} \left(\int dx - \int \cos 2x\,dx \right) = \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) + c = \frac{1}{4} \left(2x - 2 \sin x \cos x \right) + c = \frac{1}{2} \left(x - \sin x \cos x \right) + c \]

ζ) \[\int \cos^3 x\,dx = \int \frac{1+\cos 2x}{2}\,dx = \frac{1}{2} \int (1+\cos 2x)\,dx = \frac{1}{2} \left(\int dx + \int \cos 2x\,dx \right) = \frac{1}{2} \left(x + \frac{\sin 2x}{2} \right) + c = \frac{1}{4} \left(2x + 2 \sin x \cos x \right) + c = \frac{1}{2} \left(x + \sin x \cos x \right) + c \]
Osservazione. Si poteva risolvere l'integrale $\int \cos^2 x \, dx$ anche nel seguente modo:

$\zeta^\prime) \int \cos^2 x \, dx = \int (1 - \sin^2 x) \, dx = \int \sin^2 x \, dx = x - \frac{1}{2} \sin x \cos x + c = \frac{1}{2} (x + \sin x \cos x) + c$

$\eta) \int \cos^3 x \, dx = \int \cos x \cdot \cos^2 x \, dx = \int \cos x \cdot (1 - \sin^2 x) \, dx = \int \cos x \, dx - \int \cos x \sin^2 x \, dx = \sin x - \frac{1}{3} \sin^3 x + c$

$\theta) \int \frac{1}{\sin x \cos x} \, dx = \int \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \, dx = \int \frac{\sin x}{\sin x \cos x} \, dx + \int \frac{\cos^2 x}{\sin x \cos x} \, dx = \int \frac{\sin x}{\cos x} \, dx + \int \frac{\cos x}{\sin x} \, dx = \int \tan x \, dx + \int \cot x \, dx = -\log |\cos x| + \log |\sin x| + c = \log \left| \frac{\sin x}{\cos x} \right| + c = \log |\tan x| + c$

b) **Integrazione per Parti**

Siano $f(x)$ e $g(x)$ due funzioni continue e dotate di derivata prima continua in $[a, b]$. Com'è ben noto risulta:

$$D\left[f(x) \cdot g(x) \right] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

ovvero:

$$f'(x) \cdot g(x) = D\left[f(x) \cdot g(x) \right] - f(x) \cdot g'(x)$$

Integrando ora ambo i membri della precedente relazione si ottiene:

$$\int f'(x) \cdot g(x) \, dx = \int D\left[f(x) \cdot g(x) \right] \, dx - \int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) \, dx$$

che rappresenta proprio la **formula di integrazione per parti**.

Si osservi che, al primo membro, la funzione integranda non è altro che il prodotto di due fattori: $f(x)$, *fattore finito*, e $g(x) \, dx$, *fattore differenziale*. Affinché tale formula risulti utile, pertanto, è necessario trovare una primitiva di $g(x)$, così da rendere più agevole il calcolo dell'integrale che figura al secondo membro.
ESEMPIO

α) \(\int xe^x \, dx = \int e^x \cdot x \, dx = e^x \cdot x - \int e^x \cdot 1 \, dx = xe^x - e^x + c \)

avendo posto:
\[
\begin{align*}
 f'(x) &= e^x \\
 g(x) &= x \\
 \Rightarrow \quad f(x) &= e^x \\
 g'(x) &= 1
\end{align*}
\]

Osservazione. Il precedente integrale non era risolvibile agevolmente se si fossero scambiati tra di loro il fattore finito ed il fattore differenziale, ovvero se si fosse posto:
\[
\begin{align*}
 f'(x) &= x \\
 g(x) &= e^x \\
 \Rightarrow \quad f(x) &= x^2/2 \\
 g'(x) &= e^x
\end{align*}
\]

Infatti, in tal caso, non si sarebbe arrivati ad alcuna conclusione:

α') \(\int xe^x \, dx = e^x \cdot x^2/2 - e^x \cdot x^2/2 \, dx = \cdots \cdots \)

β) \(\int \log x \, dx = \int x \cdot \log x \, dx = x \cdot \log x - \int x \cdot \frac{1}{x} \, dx = \log x - \int dx = x \log x - x + c \)

avendo posto:
\[
\begin{align*}
 f'(x) &= 1 \\
 g(x) &= \log x \\
 \Rightarrow \quad f(x) &= x \\
 g'(x) &= \frac{1}{x}
\end{align*}
\]

γ) \(\int x \sin x \, dx = -x \cos x - \int -\cos x \cdot 1 \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + c \)

avendo posto:
\[
\begin{align*}
 f'(x) &= \sin x \\
 g(x) &= x \\
 \Rightarrow \quad f(x) &= -\cos x \\
 g'(x) &= 1
\end{align*}
\]

δ) \(\int \sqrt{1-x^2} \, dx = \int \sqrt{1-x^2} \cdot 1 \, dx = x \cdot \sqrt{1-x^2} - \int \frac{-x}{\sqrt{1-x^2}} \, dx = \)
\[
= x \cdot \sqrt{1-x^2} - \int \frac{-x^2 + 1 - 1}{\sqrt{1-x^2}} \, dx = x \sqrt{1-x^2} - \int \frac{1-x^2}{\sqrt{1-x^2}} \, dx + \int \frac{1}{\sqrt{1-x^2}} \, dx = \)
\[
= x \sqrt{1-x^2} - \int \frac{(1-x^2)^2}{1-x^2} \, dx + \int \frac{1}{\sqrt{1-x^2}} \, dx = x \sqrt{1-x^2} - \int \sqrt{1-x^2} \, dx + \int \frac{1}{\sqrt{1-x^2}} \, dx = \)
\[
= x \sqrt{1-x^2} - \int \sqrt{1-x^2} \, dx + \arcsin x + c
\]
avendo posto:

\[
\begin{align*}
 f'(x) &= 1 \\
 g(x) &= \sqrt{1-x^2}
\end{align*}
\]

\(\Rightarrow\)

\[
\begin{align*}
 f(x) &= x \\
 g'(x) &= \frac{-x}{\sqrt{1-x^2}}
\end{align*}
\]

Dunque:

\[
\int \sqrt{1-x^2} \, dx = x \sqrt{1-x^2} - \int \sqrt{1-x^2} \, dx + \arcsin x + c
\]

da cui:

\[
2 \int \sqrt{1-x^2} \, dx = x \sqrt{1-x^2} + \arcsin x + c
\]

ovvero:

\[
\int \sqrt{1-x^2} \, dx = \frac{1}{2} \left(x \sqrt{1-x^2} + \arcsin x \right) + c
\]

c) **Integrazione per Sostituzione**

Siano \(y = f(x) \) una funzione continua in \([a, b]\) e \(x = g(t) \) una funzione continua, con derivata prima continua, in un intervallo \([p, q]\). Si supponga, inoltre, che quando \(t \) varia in \([p, q]\), \(g(t) \) varia in \([a, b]\). Denotata ora con \(F(x) \) una primitiva di \(f(x) \), per la regola di derivazione delle funzioni composte, si ottiene:

\[
\frac{dF[g(t)]}{dt} = \frac{dF(x)}{dx} \bigg|_{x=g(t)} \cdot g'(t) = f[g(t)] \cdot g'(t)
\]

da cui, integrando ambo i membri:

\[
F[g(t)] + c = \int f[g(t)] \cdot g'(t) \, dt
\]

ossia:

\[
(3) \quad \int f(x) \, dx \bigg|_{x=g(t)} = \int f[g(t)] \cdot g'(t) \, dt
\]

La precedente formula consente di calcolare l’integrale al secondo membro qualora si sia in grado di risolvere quello al primo membro (a tal fine è sufficiente, infatti, sostituire alla \(x \) la funzione \(g(t) \)).

Osservazione 1. Se la \(x = g(t) \), oltre a soddisfare le ipotesi precedentemente enunciate, risulta anche invertibile (è possibile, cioè, esprimere \(t \) in funzione di \(x \): \(t = h(x) \)), allora:

\[
(4) \quad \int f(x) \, dx = \int f[g(t)] \cdot g'(t) \, dt \bigg|_{t=h(x)}
\]
La (3) e la (4) costituiscono, quindi, le formule di integrazione per sostituzione per gli integrali indefiniti.

Osservazione 2. Nella (3) e nella (4) l'espressione \(f \left[g \left(t \right) \right] g ' \left(t \right) dt \) si ottiene dalla \(f \left(x \right) dx \) tramite la sostituzione \(x = g \left(t \right) \), da cui si ottiene:

\[
f \left[g \left(t \right) \right] dg \left(t \right) = f \left[g \left(t \right) \right] g ' \left(t \right) dt
\]

ESEMPI

\(\alpha \) \(\int x \sqrt{1 + x^2} \, dx = \int \sqrt{t - 1} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{t - 1}} \, dt = \int \frac{\sqrt{t}}{2} \, dt = \frac{1}{2} \int t^{1/2} \, dt = \frac{1}{3} t^{3/2} + c = \frac{1}{3} (1 + x^2)^{3/2} + c \)

avendo posto:

\[
1 + x^2 = t \quad \Rightarrow \quad x^2 = t - 1 \quad \Rightarrow \quad x = \sqrt{t - 1} \quad \Rightarrow \quad dx = \frac{1}{2} \cdot \frac{1}{\sqrt{t - 1}} \, dt
\]

\(\beta \) \(\int \sin^2 x \cos x \, dx = \int t^2 \, dt = \frac{t^3}{3} + c = \frac{\sin^3 x}{3} + c \)

avendo posto:

\[
\sin x = t \quad \Rightarrow \quad dt = \cos x \, dx
\]

\(\gamma \) \(\int \frac{1}{2} \left(2 + 2 \sqrt{x} \right) \, dx = \int \frac{1}{2 + 2t} \cdot 2 \, dt = \int \frac{t}{t + 1} \, dt = \int t + 1 - \frac{1}{t + 1} \, dt = \int t + 1 \, dt - \int \frac{1}{t + 1} \, dt =
\]

\[
= \int dt - \int \frac{1}{t + 1} \, dt = t - \log |t + 1| + c = \sqrt{x} - \log \sqrt{x + 1} + c
\]

avendo posto:

\[
\sqrt{x} = t \quad \Rightarrow \quad x = t^2 \quad \Rightarrow \quad dx = 2t \, dt
\]

\(\delta \) \(\int \log \frac{\sqrt{x}}{x} \, dx = \int \frac{\log t}{t^2} \cdot 2 \, dt = 2 \int \log \frac{t}{t} \, dt = \log^2 t + c = \log^2 \sqrt{x} + c \)

avendo posto:

\[
\sqrt{x} = t \quad \Rightarrow \quad x = t^2 \quad \Rightarrow \quad dx = 2t \, dt
\]

\(\epsilon \) \(\int \sqrt{4 - x^2} \, dx = \int \sqrt{4 - (2 \cos t)^2} \cdot (-2 \sin t) \, dt = -\int 2 \sin t \cdot \sqrt{4 - 4 \cos^2 t} \, dt =
\]

\[
= -\int 2 \sin t \cdot 2 \sqrt{1 - \cos^2 t} \, dt = -4 \int \sin t \cdot \sqrt{\sin^2 t} \, dt = -4 \int \sin^2 t \, dt = -4 \int \frac{1 - \cos 2t}{2} \, dt =
\]

\[
= -2t + \sin 2t + c
\]
avendo posto:

\[x = 2\cos t \quad \Rightarrow \quad dx = -2\sin t \, dt \]

Osservazione. La formula di integrazione per sostituzione, ovvero la (4), può essere letta nei due versi, precisamente:

⇒) come nell'esempio \(\alpha \)

\(\Leftarrow \) se \(f(x) > 0 \), ponendo \(t = f(x) \) e \(dt = f'(x) \, dx \), si ha:

\[
\int \frac{f'(x)}{f(x)} \, dx = \int \frac{dt}{t} = \log |f| + c = \log |f(x)| + c
\]

com'è facile verificare con il calcolo dei seguenti integrali:

\[
\int \tan x \, dx \quad \text{e} \quad \int \cot x \, dx
\]

d) INTEGRAZIONE DELLE FUNZIONI RAZIONALI (INTERE E FRATTE)

Ripetiamo, in primo luogo alcune importanti definizioni preliminari.

Definizione 1. Una funzione del tipo:

\[y = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]

ove \(n \geq 1 \) è un numero intero ed \(a_0, a_1, \ldots, a_{n-1}, a_n \) sono costanti assegnate con \(a_0 \neq 0 \), si dice funzione razionale intera di grado \(n \) o polinomio di grado \(n \) in \(x \).

Per \(n = 0 \) si conviene che la funzione \(y \) si riduca alla costante \(a_0 \); ne segue, quindi, che una costante può considerarsi come un polinomio di grado zero.

Definizione 2. Per funzione razionale fratta si intende, invece, una funzione che sia riducibile al quoziente di due funzioni razionali intere prime tra loro e delle quali quella che figura al denominatore non sia una costante, ovvero una funzione riconducibile alla forma:

\[y = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0} \]

ove \(n \geq 0 \), \(m \geq 1 \) sono numeri interi ed \(a_0, a_1, \ldots, a_{n-1}, a_n, b_0, b_1, \ldots, b_{m-1}, b_m \) sono costanti assegnate con \(a_0 \neq 0 \) e \(b_0 \neq 0 \).

Si consideri ora una funzione del tipo (a). In tal caso risulta:

\[
(5) \quad \int \left(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \right) \, dx =
\]

\[
= \int a_n x^n \, dx + \int a_{n-1} x^{n-1} \, dx + \ldots + \int a_1 x \, dx + \int a_0 \, dx =
\]

\[
= \frac{a_n x^{n+1}}{n+1} + \frac{a_{n-1} x^n}{n} + \ldots + \frac{a_1 x^2}{2} + a_0 x^n + c
\]
Se prendiamo, invece, in esame una funzione razionale fratta del tipo \((\beta)\), ovvero della forma:
\[y = \frac{P_1(x)}{P_2(x)} \]
dove \(P_1(x), P_2(x)\) sono polinomi primi tra loro, a coefficienti reali e di grado rispettivamente \(m\) ed \(n\). Ci proponiamo di calcolare il seguente integrale:
\[(6) \quad \int \frac{P_1(x)}{P_2(x)} \, dx \]
Se \(m \geq n\) allora dividendo, in primo luogo, il numeratore per il si ottiene che:
\[P_1(x) = Q(x) \cdot P_2(x) + R(x) \]
essendo \(Q(x)\) ed \(R(x)\) rispettivamente il quoziente ed il resto della divisione dei due polinomi.
Quindi:
\[\frac{P_1(x)}{P_2(x)} = Q(x) + \frac{R(x)}{P_2(x)} \]
da cui, integrando ambo i membri, segue:
\[(6') \quad \int \frac{P_1(x)}{P_2(x)} \, dx = \int Q(x) \, dx + \int \frac{R(x)}{P_2(x)} \, dx \]
In tal modo il calcolo dell'integrale \((6)\) è ricondotto al calcolo dell'integrale di una funzione razionale intera, ossia del polinomio \(Q(x)\) e al calcolo dell'integrale di una funzione razionale fratta \(\frac{R(x)}{P_2(x)}\) nella quale il grado del numeratore è minore di quello del denominatore.
Ciò premesso consideriamo l'integrale \((6)\) supponendo, com'è lecito in base a quanto precedentemente esposto, che il grado di \(P_1(x)\) sia minore del grado di \(P_2(x)\) e che \(P_2(x)\), a coefficienti interi, sia, per comodità, della forma:
\[(\alpha') \quad y = P_2(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \]

Osservazione. Si noti che la \((\alpha')\) può essere scritta anche nel seguente modo:
\[(\alpha'') \quad P_2(x) = a_0 (x - \alpha_1)^i \cdot (x - \alpha_2)^j \cdot \ldots \cdot (x - \alpha_m)^k \]
essendo gli \(\alpha_i\) \((i = 1, 2, \ldots, m)\) gli zeri distinti di \(P_2(x)\) ed \(r_1, r_2, \ldots, r_m\) \((r_1 + r_2 + \ldots + r_m = n)\) i rispettivi ordini di molteplicità. Dal Teorema Fondamentale dell'Algebra (un polinomio di grado \(n\) in una variabile possiede almeno uno zero, reale o complesso), infatti, discende facilmente che un polinomio del tipo \((\alpha)\) possiede \(n\) zeri, tra reali e complessi, purché ciascuno di essi sia computato tante volte quant'è il suo ordine di molteplicità.
Se, invece, $P_2(x)$ è a coefficienti reali ed ammette uno zero complesso allora, come si prova facilmente, esso ammette anche lo zero complesso coniugato; i due zeri, inoltre, possiedono lo stesso ordine di molteplicità. In tal caso, quindi, si ottiene:

$$
P_2(x) = a_0 (x - \alpha_1)^{\nu_1} \cdot (x - \alpha_2)^{\nu_2} \cdot \ldots \cdot (x - \alpha_n)^{\nu_n} \cdot \left[x - (a_1 + ib_1) \right]^{\mu_1} \cdot \left[x - (a_1 - ib_1) \right]^{\mu_2} \cdot \ldots \cdot \left[x - (a_k + ib_k) \right]^{\mu_k} \cdot \left[x - (a_k - ib_k) \right]^{\mu_k}
$$

o anche:

$$(\alpha''') \quad P_2(x) = a_0 (x - \alpha_1)^{\nu_1} \cdot (x - \alpha_2)^{\nu_2} \cdot \ldots \cdot (x - \alpha_n)^{\nu_n} \cdot \left(x^2 + p_1 x + q_1 \right)^{\sigma_1} \cdot \ldots \cdot \left(x^2 + p_k x + q_k \right)^{\sigma_k}$$

dove:

- $x^2 + p_j x + q_j$ ($j = 1, 2, \ldots, k$) è il trinomio avente per zeri $a_j \pm ib_j$
- $r_1 + r_2 + \ldots + r_n + 2(s_1 + s_2 + \ldots + s_k) = n$

Se, pertanto, $P_1(x)$ è della forma $P_1(x)$ allora è possibile determinare, come si prova facilmente, che esistono n costanti $A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_n, C_1, C_2, \ldots, C_n, D_1, D_2, \ldots, D_{r+1}$ tali che, per ogni x diverso dagli zeri di $P_2(x)$:

$$
P_1(x) = \frac{A_1}{x-\alpha_1} + \frac{A_2}{x-\alpha_2} + \ldots + \frac{A_n}{x-\alpha_n} + \frac{B_1(x) + C_1}{x^2 + p_1 x + q_1} + \frac{B_2(x) + C_2}{x^2 + p_2 x + q_2} + \ldots + \frac{B_n(x) + C_n}{x^2 + p_k x + q_k} + \frac{d}{dx} \frac{D_1 x^\nu + D_2 x^{\nu-1} + \ldots + D_{r+1} x + D_{r+1}}{T(x)}$$

dove:

- $T(x) = a_0 (x - \alpha_1)^{\nu_1 - 1} \cdot (x - \alpha_2)^{\nu_2 - 1} \cdot \ldots \cdot (x - \alpha_n)^{\nu_n - 1} \cdot \left(x^2 + p_1 x + q_1 \right)^{\sigma_1 - 1} \cdot \ldots \cdot \left(x^2 + p_k x + q_k \right)^{\sigma_k - 1}$
- ν è il grado di $T(x)$ diminuito di un'unità

La determinazione delle costanti, infine, si effettua nel seguente modo: si esegue la derivazione indicata nel secondo membro della (γ) e poi si riduce il secondo membro ad un'unica frazione avente per denominatore proprio $P_2(x)$, così da ottenere un'espressione del tipo:

$$(\star) \quad \frac{P_1(x)}{P_2(x)} = \frac{M(x)}{P_2(x)}$$

essendo $M(x)$ un polinomio i cui coefficienti contengono le costanti da determinare. Dalla (\star) segue, quindi, che:

$$P_1(x) = M(x)$$
Applicando ora il principio di identità dei polinomi, ovvero uguagliando i coefficienti delle potenze simili di $P_1(x)$ ed $M(x)$ si ottiene un sistema avente per incognite esattamente le costanti desiderate.

Determinate le costanti, risulta:

\[
\begin{align*}
& (\delta) \quad \int \frac{P_1(x)}{P_2(x)} \, dx = A_1 \int \frac{dx}{x - \alpha_1} + A_2 \int \frac{dx}{x - \alpha_2} + \ldots + A_n \int \frac{dx}{x - \alpha_n} + \\
& + \int \frac{B_1(x) + C_1}{x^2 + p_1 x + q_1} \, dx + \ldots + \int \frac{B_n(x) + C_n}{x^2 + p_n x + q_n} \, dx + \\
& + \frac{D_1 x^{x^1} + D_2 x^{x-1} + \ldots + D_v x + D_{v+1}}{T(x)}
\end{align*}
\]

In base alla (\delta) il calcolo dell'integrale (6) è ricondotto al calcolo degli integrali:

\[
\begin{align*}
& (7) \quad \int \frac{a}{x - \alpha} \, dx \\
& (8) \quad \int \frac{ax + b}{x^2 + px + q} \, dx
\end{align*}
\]

con a, b, α, p, q costanti e $p^2 - 4q < 0$.

Ne segue, quindi, che:

\[
\int \frac{a}{x - \alpha} \, dx = a \int \frac{dx}{x - \alpha} = a \log|x - \alpha| + c
\]

mentre:

\[
\begin{align*}
& \int \frac{ax + b}{x^2 + px + q} \, dx = \frac{1}{2} \int \frac{2 \cdot (ax + b)}{x^2 + px + q} \, dx = \frac{1}{2} \int \frac{2ax + 2b + ap - ap}{x^2 + px + q} \, dx = \\
& = \frac{1}{2} \int \frac{a \cdot (2x + p) + 2b - ap}{x^2 + px + q} \, dx = \frac{a}{2} \int \frac{2x + p}{x^2 + px + q} \, dx + \frac{1}{2} \int \frac{2b - ap}{x^2 + px + q} \, dx = \\
& = \frac{a}{2} \int \frac{d(x^2 + px + q)}{x^2 + px + q} \, dx + \frac{2b - ap}{2} \int \frac{dx}{x^2 + px + q} = \\
& = \frac{a}{2} \log|x^2 + px + q| + \frac{2b - ap}{2} \int \frac{dx}{x^2 + px + q}
\end{align*}
\]

Calcoliamo ora, a parte, l'integrale che figura all'ultimo membro, osservando che:

\[
x^2 + px + q = x^2 + px + \frac{p^2}{4} - \frac{p^2}{4} + q = \left(x + \frac{p}{2}\right)^2 + \frac{4q - p^2}{4}
\]
Posto:
\[\frac{4q - p^2}{4} = \Delta^2 \]

\[x + \frac{p}{2} = t\Delta \quad \Rightarrow \quad dx = \Delta dt \]

si ottiene:

\[\int \frac{dx}{x^2 + px + q} = \int \frac{\Delta dt}{t^2\Delta^2 + \Delta^2} = \frac{1}{\Delta} \int \frac{dt}{t^2 + 1} = \frac{1}{\Delta} \arctg t + c = \frac{1}{\Delta} \arctg \left(\frac{x + \frac{p}{2}}{\Delta} \right) + c = \]

\[= \frac{2}{\sqrt{4q - p^2}} \arctg \left(\frac{2x + p}{\sqrt{4q - p^2}} \right) + c \]

Dunque:

\[\int \frac{ax + b}{x^2 + px + q} dx = \frac{a}{2} \log \left| x^2 + px + q \right| + \frac{2b - ap}{\sqrt{4q - p^2}} \arctg \left(\frac{2x + p}{\sqrt{4q - p^2}} \right) + c \]

L'integrazione delle funzioni razionali è così completata. Possiamo semplicemente aggiungere che il calcolo dell'integrale (6) si sa eseguire a meno di difficoltà di natura algebrica consistenti nella determinazione degli zeri del polinomio \(P_2(x) \).

ESEMPI

\[\int \frac{x^2 - 3x + 1}{1 - x} dx = \int \left(-x + 2 + \frac{1}{1 - x} \right) dx = -\frac{1}{2} x^2 + 2x - 10 \log |x - 1| + c = \]

\[= -\frac{1}{2} x^2 + 2x + \log |x - 1| + c \]

dopo aver eseguito l'usuale divisione tra polinomi ed aver applicato la (6') con:

\[P_1(x) = x^2 - 3x + 1 \quad (m = 2) \]
\[Q(x) = -x + 2 \]
\[P_2(x) = 1 - x \quad (n = 1) \]
\[R(x) = -1 \]

\[\int \frac{1}{x^2 + 5x + 6} dx \]

Si osservi, in primo luogo, che:

\[P_1(x) = 1 \quad (m = 0) \]
\[P_2(x) = x^2 + 5x + 6 \quad (n = 2) \]

con \(\Delta = 25 - 24 = 1 > 0 \)

per cui le soluzioni del polinomio \(P_2(x) \) sono reali e distinte, precisamente:

\[\alpha_1 = -2 \quad \text{ed} \quad \alpha_2 = -3 \quad \text{(non ci sono soluzioni complesse!)} \]
Essendo, pertanto, \(P_1(x) \) della forma \((\alpha'') \), in virtù della \((\gamma) \), si ottiene:
\[
\frac{1}{x^2 + 5x + 6} = \frac{A}{x+2} + \frac{B}{x+3} = \frac{A(x+3) + B(x+2)}{(x+2)(x+3)} = \frac{Ax + 3A + Bx + 2B}{(x+2)(x+3)} =
\]
\[
= \frac{x(A+B) + 3A + 2B}{(x+2)(x+3)}
\]
che è del tipo \((*) \) con:
\[
P_1(x) = 1, \quad P_2(x) = x^2 + 5x + 6 = (x+2)(x+3), \quad M(x) = x(A+B) + 3A + 2B
\]
Per il principio di identità dei polinomi risulta:
\[
\begin{cases}
A + B = 0 \\
3A + 2B = 1
\end{cases} \quad \Rightarrow \quad \begin{cases}
A = +1 \\
B = -1
\end{cases}
\]
Si avrà, infine:
\[
\int \frac{1}{x^2 + 5x + 6} \, dx = 1 \cdot \int \frac{dx}{x+2} - 1 \cdot \int \frac{dx}{x+3} = \log|x+2| - \log|x+3| + c = \log\left|\frac{x+2}{x+3}\right| + c =
\]
\[
= \log\left|\frac{x+2}{x+3}\right| + c
\]
\[
\beta') \quad \int \frac{3x+8}{x^2 - 5x + 6} \, dx
\]
Si osservi, in primo luogo, che:
\[
P_1(x) = 3x + 8 \quad (m = 1)
\]
\[
P_2(x) = x^2 - 5x + 6 \quad (n = 2)
\]
con \(\Delta = 25 - 24 = 1 > 0 \)
per cui le soluzioni del polinomio \(P_2(x) \) sono reali e distinte:
\[
\alpha_1 = 2 \quad \text{ed} \quad \alpha_2 = 3 \quad \text{(non ci sono soluzioni complesse!)}
\]
Essendo, pertanto, \(P_2(x) \) della forma \((\alpha'') \), in virtù della \((\gamma) \), si ottiene:
\[
\frac{3x+8}{x^2 - 5x + 6} = \frac{A}{x-2} + \frac{B}{x-3} = \frac{A(x-3) + B(x-2)}{(x-2)(x-3)} = \frac{Ax - 3A + Bx - 2B}{(x-2)(x-3)} =
\]
\[
= \frac{x(A+B) - 3A - 2B}{(x-2)(x-3)}
\]
che è del tipo \((*) \) con:
\[
P_1(x) = 3x + 8, \quad P_2(x) = x^2 - 5x + 6 = (x-2)(x-3), \quad M(x) = x(A+B) - 3A - 2B
\]
Per il principio di identità dei polinomi risulta:
\[
\begin{cases}
A + B = 3 \\
-3A - 2B = 8
\end{cases} \quad \Rightarrow \quad \begin{cases}
A = -14 \\
B = 17
\end{cases}
\]

Si avrà, infine:
\[
\int \frac{3x + 8}{x^2 - 5x + 6} \, dx = -14 \int \frac{dx}{x - 2} + 17 \int \frac{dx}{x - 3} = -14\log |x - 2| + 17\log |x - 3| + c = \\
= \log \left| \frac{x - 3}{x - 2} \right|^{17} + c
\]
\[
\gamma \int \frac{1}{x^3 - 6x^2 + 11x - 6} \, dx
\]
Si osservi, in primo luogo, che:
\[
P_1(x) = 1 \quad (m = 0)
\]
\[
P_2(x) = x^3 - 6x^2 + 11x - 6 \quad (n = 3)
\]
con
\[x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)\]
per cui le soluzioni del polinomio \(P_2(x)\) sono reali e distinte, precisamente:
\[
\alpha_1 = 1, \quad \alpha_2 = 2, \quad \alpha_3 = 3 \quad \text{(non ci sono soluzioni complesse!)}
\]
Pertanto:
\[
\frac{1}{x^3 - 6x^2 + 11x - 6} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3} = \\
= \frac{A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2)}{(x - 1)(x - 2)(x - 3)} = \\
= \frac{A(x^2 - 5x + 6) + B(x^2 - 4x + 3) + C(x^2 - 3x + 2)}{(x - 1)(x - 2)(x - 3)} = \\
= \frac{x^2(A + B + C) + x(-5A - 4B - 3C) + 6A + 3B + 2C}{(x - 1)(x - 2)(x - 3)}
\]
che è del tipo (*) con:
\[
P_1(x) = 1, \quad P_2(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3), \\
M(x) = x^3 (A + B + C) + x (-5A - 4B - 3C) + 6A + 3B + 2C
\]
Per il principio di identità dei polinomi risulta:
\[
\begin{cases}
A + B + C = 0 \\
-5A - 4B - 3C = 0 \\
6A + 3B + 2C = 1
\end{cases} \quad \Rightarrow \\
\begin{cases}
A = \frac{1}{2} \\
B = -1 \\
C = \frac{1}{2}
\end{cases}
\]
Si avrà, infine:
\[
\int \frac{1}{x^3 - 6x^2 + 11x - 6} \, dx = \frac{1}{2} \int \frac{dx}{x - 1} - 1 \int \frac{dx}{x - 2} + \frac{1}{2} \int \frac{dx}{x - 3} = \\
= \frac{1}{2} \log |x - 1| - \log |x - 2| + \frac{1}{2} \log |x - 3| + c
\]
Si osservi, in primo luogo, che:

\[P_1(x) = \frac{2x + 1}{x^3 - 6x^2 + 11x - 6} \quad (m = 0) \]

\[P_2(x) = x^3 - 6x^2 + 11x - 6 \quad (n = 3) \quad \text{con} \quad x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3) \]

Per cui le soluzioni del polinomio \(P_2(x) \) sono reali e distinte, precisamente:

\[\alpha_1 = 1, \quad \alpha_2 = 2, \quad \alpha_3 = 3 \quad \text{(non ci sono soluzioni complesse!)} \]

Ne segue:

\[
\frac{2x + 1}{x^3 - 6x^2 + 11x - 6} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3} = \frac{A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2)}{(x - 1)(x - 2)(x - 3)}
\]

\[
= \frac{A(x^2 - 5x + 6) + B(x^2 - 4x + 3) + C(x^2 - 3x + 2)}{(x - 1)(x - 2)(x - 3)} = \frac{x^2(A + B + C) + x(-5A - 4B - 3C) + 6A + 3B + 2C}{(x - 1)(x - 2)(x - 3)}
\]

che è del tipo (*) con:

\[P_1(x) = 2x + 1, \quad P_2(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3), \]

\[M(x) = x^2(A + B + C) + x(-5A - 4B - 3C) + 6A + 3B + 2C \]

Per il principio di identità dei polinomi risulta:

\[
\begin{cases}
A + B + C = 0 \\
-5A - 4B - 3C = 2 \\
6A + 3B + 2C = 1
\end{cases} \iff
\begin{cases}
A = \frac{3}{2} \\
B = -5 \\
C = \frac{7}{2}
\end{cases}
\]

Si avrà, infine:

\[
\begin{align*}
\int \frac{2x + 1}{x^3 - 6x^2 + 11x - 6} \, dx &= \frac{3}{2} \int \frac{dx}{x - 1} - 5 \int \frac{dx}{x - 2} + \frac{7}{2} \int \frac{dx}{x - 3} \\
&= \frac{3}{2} \log|x - 1| - 5 \log|x - 2| + \frac{7}{2} \log|x - 3| + c
\end{align*}
\]

\(\gamma'' \) \int \frac{x^2 + x - 8}{x^3 - 2x^2 - x + 2} \, dx

Risulta:

\[P_1(x) = x^2 + x - 8 \quad (m = 2) \]

\[P_2(x) = x^3 - 2x^2 - x + 2 \quad (n = 3) \quad \text{con} \quad x^3 - 2x^2 - x + 2 = (x + 1)(x - 1)(x - 2) \]
per cui le soluzioni del polinomio $P_2(x)$ sono reali e distinte, precisamente:

$$\alpha_1 = -1, \quad \alpha_2 = +1, \quad \alpha_3 = 2 \quad \text{(non ci sono soluzioni complesse!)}$$

Essendo:

$$\frac{x^2 + x - 8}{x^3 - 2x^2 - x + 2} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{x-2}$$

$$= \frac{A(x-1)(x-2) + B(x+1)(x-2) + C(x+1)(x-1)}{(x+1)(x-1)(x-2)}$$

$$= \frac{A(x^2 - 3x + 2) + B(x^2 - x - 2) + C(x^2 - 1)}{(x+1)(x-1)(x-2)} = \frac{x^2(A + B + C) + x(-3A - B) + 2A - 2B - C}{(x+1)(x-1)(x-2)}$$

che è del tipo (*): con:

$$P_1(x) = x^2 + x - 8, \quad P_2(x) = x^3 - 2x^2 - x + 2 = (x+1)(x-1)(x-2), \quad M(x) = x^2(A + B + C) + x(-3A - B) + 2A - 2B - C$$

per il principio di identità dei polinomi risulta:

\[
\begin{align*}
A + B + C &= 1 \\
-3A - B &= 1 \\
-2A - 2B &- C = -8
\end{align*}
\Rightarrow
\begin{align*}
A &= -4 \\
B &= 11 \\
C &= -6
\end{align*}
\]

Si avrà, infine:

$$\int \frac{x^2 + x - 8}{x^3 - 2x^2 - x + 2} \, dx = \int \frac{4}{x+1} + \int \frac{11}{x-1} - \int \frac{6}{x-2} =$$

$$= -4 \log|x+1| + 11 \log|x-1| - 6 \log|x-2| + c$$

8') \quad \int \frac{1}{x^3 - x^2 - x + 1} \, dx

Si osservi, in primo luogo, che:

$$P_1(x) = 1 \quad (m = 0)$$

$$P_2(x) = x^3 - x^2 - x + 1 \quad (n = 3) \quad \text{con} \quad x^3 - x^2 - x + 1 = (x+1)(x-1)^2$$

Le soluzioni del polinomio $P_2(x)$ sono, cioè:

$$\alpha_1 = \alpha_2 = -1, \quad \alpha_3 = 1 \quad \text{(non ci sono soluzioni complesse!)}$$

da cui:

$$\frac{1}{x^3 - x^2 - x + 1} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2} = \frac{A(x-1)^2 + B(x+1)(x-1) + C(x+1)}{(x+1)(x-1)^2}$$

$$= \frac{A(x^2 - 2x + 2) + B(x^2 - 1) + C(x+1)}{(x+1)(x-1)^2} = \frac{x^2(A + B) + x(-2A + C) + 2A - B + C}{(x+1)(x-1)^2}$$
che è del tipo (*): con:

\[P_1(x) = 1, \quad P_2(x) = x^3 - x^2 - x + 1 = (x + 1)(x - 1)^2, \]

\[M(x) = x^2(A + B) + x(-2A + C) + 2A - B + C \]

Per il principio di identità dei polinomi risulta:

\[
\begin{aligned}
A + B &= 0 \\
-2A + C &= 0 \\
2A - B + C &= 1
\end{aligned}
\implies
\begin{aligned}
A &= \frac{1}{5} \\
B &= -\frac{1}{5} \\
C &= \frac{2}{5}
\end{aligned}
\]

Si avrà, infine:

\[
\int \frac{1}{x^3 - x^2 - x + 1} \, dx = \frac{1}{5} \int \frac{dx}{x+1} - \frac{1}{5} \int \frac{dx}{x-1} + \frac{2}{5} \int \frac{dx}{(x-1)^2} =
\]

\[
= \frac{1}{5} \log |x+1| - \frac{1}{5} \log |x-1| - \frac{2}{5(x-1)}
\]

S') \quad \int \frac{x+2}{x^3 - x^2 - x + 1} \, dx

Si osservi, in primo luogo, che:

\[P_1(x) = x+2 \quad (m = 1) \]

\[P_2(x) = x^3 - x^2 - x + 1 \quad (n = 3) \]

per cui le soluzioni del polinomio \(P_2(x) \) sono:

\[\alpha_1 = \alpha_2 = -1, \quad \alpha_3 = 1 \quad (\text{non ci sono soluzioni complesse!}) \]

Si ottiene, così:

\[
\frac{x+2}{x^3 - x^2 - x + 1} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2} = \frac{A(x-1)^2 + B(x+1)(x-1) + C(x+1)}{(x+1)(x-1)^2} =
\]

\[
= \frac{A(x^2 - 2x + 2) + B(x^2 - 1) + C(x + 1)}{(x+1)(x-1)^2} = \frac{x^2(A + B) + x(-2A + C) + 2A - B + C}{(x+1)(x-1)^2}
\]

che è del tipo (*): con:

\[P_1(x) = x+2, \quad P_2(x) = x^3 - x^2 - x + 1 = (x + 1)(x - 1)^2, \]

\[M(x) = x^2(A + B) + x(-2A + C) + 2A - B + C \]

Per il principio di identità dei polinomi risulta:

\[
\begin{aligned}
A + B &= 0 \\
-2A + C &= 1 \\
2A - B + C &= 1
\end{aligned}
\implies
\begin{aligned}
A &= 0 \\
B &= 0 \\
C &= 1
\end{aligned}
\]
Si avrà, infine:
\[
\int \frac{x+2}{x^3-x^2-x+1} \, dx = 0 \int \frac{dx}{x+1} + 0 \int \frac{dx}{x-1} + 1 \int \frac{dx}{(x-1)^2} = -\frac{1}{x-1} + c
\]

5') \quad \int \frac{x^2+1}{x^3-x^2-x+1} \, dx

Si osservi, in primo luogo, che:
\[P_1(x) = x^2 + 1 \quad (m = 2)\]
\[P_2(x) = x^3 - x^2 - x + 1 \quad (n = 3) \quad \text{con} \quad x^3 - x^2 - x + 1 = (x+1) \cdot (x-1)^2\]

per cui le soluzioni del polinomio \(P_2(x)\) sono:
\[\alpha_1 = \alpha_2 = -1, \quad \alpha_3 = 1 \quad \text{(non ci sono soluzioni complesse!)}\]

Quindi:
\[
\frac{x^2+1}{x^3-x^2-x+1} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2} = \frac{A(x-1)^2 + B(x+1)(x-1) + C(x+1)}{(x+1)(x-1)^2}
\]
\[
= \frac{A(x^2 - 2x + 2) + B(x^2 - 1) + C(x + 1)}{(x+1)(x-1)^2} = \frac{x^2(A + B) + x(-2A + C) + 2A - B + C}{(x+1)(x-1)^2}
\]

che è del tipo (*) con:
\[P_1(x) = x^2 + 1, \quad P_2(x) = x^3 - x^2 - x + 1 = (x+1) \cdot (x-1)^2,\]
\[M(x) = x^2(A + B) + x(-2A + C) + 2A - B + C\]

Per il principio di identità dei polinomi risulta:
\[
\begin{cases}
A + B = 1 \\
-2A + C = 0 \\
2A - B + C = 1
\end{cases} \quad \Rightarrow \quad \begin{cases}
A = \frac{2}{5} \\
B = \frac{3}{5} \\
C = \frac{4}{5}
\end{cases}
\]

Si avrà, infine:
\[
\int \frac{x^2+1}{x^3-x^2-x+1} \, dx = \frac{2}{5} \int \frac{dx}{x+1} + \frac{3}{5} \int \frac{dx}{x-1} + \frac{4}{5} \int \frac{dx}{(x-1)^2} = \frac{2}{5} \log|x+1| + \frac{3}{5} \log|x-1| - \frac{4}{5(x-1)} + c
\]
\[\varepsilon) \quad \int \frac{dx}{x^2 - 4x + 4} \]

Si osservi, in primo luogo, che:
\[P_1(x) = 1 \quad (m = 0) \]
\[P_2(x) = x^2 - 4x + 4 \quad (n = 2) \]

con
\[\Delta = 4 - 4 = 0 \]

per cui le soluzioni del polinomio \(P_2(x) \) sono reali e coincidenti:
\[\alpha_1 = 2 = \alpha_2 \quad \text{(non ci sono soluzioni complesse!)} \]

Pertanto si può scrivere:
\[\int \frac{dx}{x^2 - 4x + 4} = \int \frac{dx}{(x-2)^2} = \int (x-2)^{-2} \, dx = -\frac{1}{x-2} + c \]

\[\varepsilon') \quad \int \frac{x-2}{x^2 - 4x + 4} \, dx \]

Si osservi, in primo luogo, che:
\[P_1(x) = x-2 \quad (m = 1) \]
\[P_2(x) = x^2 - 4x + 4 \quad (n = 2) \]

con
\[\Delta = 4 - 4 = 0 \]

per cui le soluzioni del polinomio \(P_2(x) \) sono reali e coincidenti:
\[\alpha_1 = 2 = \alpha_2 \quad \text{(non ci sono soluzioni complesse!)} \]

Osservando adesso che il numeratore è, a meno del fattore 2, la derivata del denominatore si può scrivere immediatamente:
\[\int \frac{x-2}{x^2 - 4x + 4} \, dx = \frac{1}{2} \int \frac{2(x-2)}{x^2 - 4x + 4} \, dx = \frac{1}{2} \log (x-2)^2 + c \]

\[\varepsilon'') \quad \int \frac{x+4}{4x^2 + 12x + 9} \, dx \]

Si osservi, in primo luogo, che:
\[P_1(x) = x+4 \quad (m = 1) \]
\[P_2(x) = 4 x^2 + 12x + 9 \quad (n = 2) \]

con
\[\Delta = 36 - 36 = 0 \]

per cui le soluzioni del polinomio \(P_2(x) \) sono reali e coincidenti:
\[\alpha_1 = -\frac{3}{2} = \alpha_2 \quad \text{(non ci sono soluzioni complesse!)} \]

Poiché il numeratore non è né la derivata del denominatore né una costante l'integrale non è immediato.
Si osservi, però, che:

\[D\left(4x^2 + 12x + 9\right) = 8x + 12 \]

Moltiplicando e dividendo per 8 la funzione integranda ed aggiungendo e sottraendo 20 al numeratore della funzione stessa, quindi, si ottiene:

\[
\int \frac{x + 4}{4x^2 + 12x + 9} \, dx = \int \frac{8 \cdot (x + 4) + 20 - 20}{8 \cdot (4x^2 + 12x + 9)} \, dx = \frac{1}{8} \int \frac{8x + 32 + 20 - 20}{4x^2 + 12x + 9} \, dx = \\
= \frac{1}{8} \int \frac{8x + 12}{4x^2 + 12x + 9} \, dx = \frac{1}{8} \int \frac{8x + 12}{4x^2 + 12x + 9} \, dx + \frac{1}{8} \int \frac{20}{4x^2 + 12x + 9} \, dx = \\
= \frac{1}{8} \log \left(2x + 3\right)^2 + \frac{5}{2} \int \frac{2}{2 \cdot (2x + 3)} \, dx = \frac{1}{8} \log \left(2x + 3\right)^2 + \frac{5}{2} \int \frac{2}{2 \cdot (2x + 3)} \, dx = \\
= \frac{1}{8} \log \left(2x + 3\right)^2 + \frac{5}{4} \int \frac{2}{2 \cdot (2x + 3)} \, dx = \log \left|2x + 3\right| + \frac{5}{4} \cdot \frac{1}{2x + 3} + c = \\
= \log \sqrt{2x + 3} - \frac{5}{4 \cdot (2x + 3)} + c \\
\] (il numeratore della funzione integranda è pari ad uno!)

Si osservi, in primo luogo, che:

\[P_1(x) = 1 \quad (m = 0) \]
\[P_2(x) = 4x^2 + 9 \quad (n = 2) \quad \text{con} \quad \Delta = -144 < 0 \]

e che le soluzioni del polinomio \(P_2(x) \) sono complesse e coniugate:

\[\alpha_1 = \frac{3}{2} i \quad \text{ed} \quad \alpha_2 = -\frac{3}{2} i \]

Essendo, pertanto, \(P_2(x) \) della forma \((\alpha'''\)) in virtù della \((\delta)\), si ottiene:

\[
\int \frac{1}{4x^2 + 9} \, dx = \int \frac{1}{4 \cdot \left(x - \frac{3}{2} i \right) \cdot \left(x + \frac{3}{2} i \right)} \, dx = \int \frac{1}{4 \cdot \left(x^2 + \frac{9}{4}\right)} \, dx = \frac{1}{4 \cdot \frac{9}{4}} \cdot \frac{3}{2} \int \frac{1}{\left(x + \frac{3}{2}\right)} \, dx = \\
= \frac{1}{3} \cdot \frac{3}{2} \cdot \arctg \frac{x}{\frac{3}{2}} + c = \frac{1}{6} \cdot \arctg \frac{2}{3} x + c \\
\]
Si osservi, in primo luogo, che:

\[P_1(x) = 1 \quad (m = 0) \]

\[P_2(x) = x^2 + x + 1 \quad (n = 2) \quad \text{con} \quad \Delta = 1 - 4 = -3 < 0 \]

e che le soluzioni del polinomio \(P_2(x) \) sono complesse e coniugate:

\[\alpha_1 = \frac{-1 + \sqrt{3} i}{2} \quad \text{ed} \quad \alpha_2 = \frac{-1 - \sqrt{3} i}{2} \]

Essendo, pertanto, \(P_2(x) \) della forma \((\alpha''') \), in virtù della \((\delta) \), si può scrivere:

\[
\int \frac{1}{x^2 + x + 1} \, dx = \int \frac{1}{\left(x + \frac{1}{2} - \frac{\sqrt{3}}{2} i\right) \left(x + \frac{1}{2} + \frac{\sqrt{3}}{2} i\right)} \, dx = \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, dx = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2} \cdot \frac{1}{2} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, dx = \frac{4}{3} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + 1} \, dx = \frac{2}{3} \sqrt{3} \arctg \frac{2x + 1}{\sqrt{3}} + c
\]

Osservazione. Nel caso in cui \(\Delta < 0 \) ed il numeratore della funzione integranda sia uguale ad uno, allora, dette \(m \pm in \) le radici complesse coniugate del denominatore, si può scrivere:

\[
\int \frac{1}{ax^2 + bx + c} \, dx = \frac{1}{an^2} \cdot \left(\int \frac{1}{\left(\frac{x - m}{n}\right)^2 + 1} \, dx \right) = \frac{1}{an^2} \cdot n \int \frac{1/ n}{x - m} \, dx = \frac{1}{an} \arctg \frac{x - m}{n} + c
\]

\[\eta) \quad \int \frac{1}{x^n - 1} \, dx \]

Si osservi, in primo luogo, che:

\[P_1(x) = 1 \quad (m = 0) \]

\[P_2(x) = x^3 - 1 \quad (n = 3) \quad \text{con} \quad x^3 - 1 = (x - 1) \cdot (x^2 + x + 1) \]
per cui le soluzioni del polinomio \(P_2(x) \) sono:

\[
\alpha_1 = 1, \quad \alpha_2 = \frac{-1 + \sqrt{3} } {2} i, \quad \alpha_3 = \frac{-1 - \sqrt{3} } {2} i \quad \Delta = -3 < 0
\]

Essendo, pertanto, \(P_2(x) \) della forma \((\alpha''')\), in virtù della \((\delta)\), si ottiene:

\[
\frac{1}{x^3-1} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1} = \frac{A(x^2+x+1)+(Bx+C)(x-1)}{(x-1)(x^2+x+1)} = \frac{Ax^2+Ax+A+Bx^2-Bx+Cx-C}{(x-1)(x^2+x+1)} = \frac{x^2(A+B)+x(A-B+C)+A-C}{(x-1)(x^2+x+1)}
\]

che è del tipo \((*)\) con:

\[
P_1(x) = 1, \quad P_2(x) = x^3 - 1 = (x-1)(x^2+x+1), \quad M(x) = x^2(A+B)+x(A-B+C)+A-C
\]

Per il principio di identità dei polinomi risulta:

\[
\begin{cases}
A + B = 0 \\
A - B + C = 0 \quad \Rightarrow \quad \begin{cases}
A = \frac{1}{3} \\
B = -\frac{1}{3} \\
C = -\frac{2}{3}
\end{cases}
\end{cases}
\]

Si avrà, infine, tenendo conto dell’esempio \(\zeta'\):

\[
\int \frac{1}{x^3-1} dx = \frac{1}{3} \int \frac{dx}{x-1} + \frac{1}{3} \int \frac{-x-2}{x^2+x+1} dx = \frac{1}{3} \log |x-1| - \frac{1}{3} \int \frac{2x}{2(x^2+x+1)} dx - \frac{2}{3} \int \frac{dx}{x^2+x+1} = \frac{1}{3} \log |x-1| - \frac{1}{6} \int \frac{2x+1}{x^2+x+1} dx + \frac{1}{3} \int \frac{dx}{x^2+x+1} - \frac{2}{3} \int \frac{dx}{x^2+x+1} = \frac{1}{3} \log |x-1| - \frac{1}{6} \log (x^2+x+1) = \frac{1}{2} \int \frac{dx}{x^2+x+1} + \frac{1}{2} \left(\frac{2\sqrt{3}}{3} \arctg \frac{2x+1}{\sqrt{3}} \right) + c = \frac{1}{3} \log |x-1| - \frac{1}{6} \log (x^2+x+1) - \frac{\sqrt{3}}{3} \arctg \frac{2x+1}{\sqrt{3}} + c
\]

20
\[0) \int \frac{16(2x-1)}{(x-1)(x^2 + 2x + 5)} \, dx\]

Si osservi, in primo luogo, che:

\[P_1(x) = 16(2x-1) \quad (m = 1)\]
\[P_2(x) = (x-1)(x^2 + 2x + 5) \quad (n = 3)\]

per cui le soluzioni del polinomio \(P_2(x) \) sono:

\[\alpha_1 = 1, \quad \alpha_2 = -1 + 2i, \quad \alpha_3 = -1 - 2i \quad \Delta = -4 < 0\]

Essendo, pertanto, \(P_2(x) \) della forma \((\alpha''')\), in virtù della \((\delta)\), si ottiene:

\[
\frac{16(2x-1)}{(x-1)(x^2 + 2x + 5)} = \frac{A}{x-1} + \frac{Bx+C}{x^2 + 2x + 5} = \frac{A(x^2 + 2x + 5) + (Bx + C)(x-1)}{(x-1)(x^2 + 2x + 5)} = \]

\[
= \frac{Ax^2 + 2Ax + 5A + Bx^2 - Bx + Cx - C}{(x-1)(x^2 + 2x + 5)} = \frac{x^2(A + B) + x(2A - B + C) + 5A - C}{(x-1)(x^2 + 2x + 5)}
\]

che è del tipo \((*)\) con:

\[P_1(x) = 16(2x-1), \quad P_2(x) = (x-1)(x^2 + 2x + 5),\]
\[M(x) = x^2(A + B) + x(2A - B + C) + 5A - C\]

Per il principio di identità dei polinomi risulta:

\[
\begin{cases}
A + B = 0 \\
2A - B + C = 32 \Rightarrow B = -2 \\
5A - C = -16 \Rightarrow C = 26
\end{cases}
\]

Si avrà, infine, tenendo conto dell’esempio \(\zeta'\):

\[
\int \frac{16(2x-1)}{(x-1)(x^2 + 2x + 5)} \, dx = 2 \int \frac{dx}{x-1} + \int \frac{-2x + 26}{x^2 + 2x + 5} \, dx =
\]

\[
= 2\log|x-1| - \int \frac{2x}{x^2 + 2x + 5} \, dx + 26 \int \frac{dx}{x^2 + 2x + 5} =
\]

\[
= 2\log|x-1| - \int \frac{2x + 2 - 2}{x^2 + 2x + 5} \, dx + 26 \int \frac{dx}{x^2 + 2x + 5} =
\]

\[
= 2\log|x-1| - \int \frac{2x + 2}{x^2 + 2x + 5} \, dx + 2 \int \frac{dx}{x^2 + 2x + 5} + 26 \int \frac{dx}{x^2 + 2x + 5} =
\]

\[
= 2\log|x-1| - \int \frac{2x + 2}{x^2 + 2x + 5} \, dx + 28 \int \frac{dx}{x^2 + 2x + 5} =
\]

21
\[
= 2 \log |x - 1| - \log (x^2 + 2x + 5) + 28 \int \frac{dx}{x^2 + 2x + 5} = \\
= 2 \log |x - 1| - \log (x^2 + 2x + 5) + 14 \arctg \frac{x + 1}{2} + c
\]

1) \[\int \frac{x^2 - 2x - 1}{(x + 1)(x^2 + x + 1)} \, dx\]

Si osservi, in primo luogo, che:
\[P_1(x) = x^2 - 2x - 1 \quad (m = 2)\]
\[P_2(x) = (x+1)(x^2 + x + 1) \quad (n = 3)\]
per cui le soluzioni del polinomio \(P_2(x)\) sono:
\[\alpha_1 = -1, \quad \alpha_2 = \frac{-1 + \sqrt{3} \, i}{2}, \quad \alpha_3 = \frac{-1 - \sqrt{3} \, i}{2} \quad \Delta = -3 < 0\]

Essendo, pertanto, \(P_2(x)\) della forma (\(\alpha'''\)), in virtù della (\(\delta\)), si ottiene:
\[
\frac{x^2 - 2x - 1}{(x + 1)(x^2 + x + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + x + 1} = \frac{A(x^2 + x + 1) + (Bx + C)(x + 1)}{(x + 1)(x^2 + x + 1)} = \\
= \frac{Ax^2 + Ax + A + Bx^2 + Bx + Cx + C}{(x + 1)(x^2 + x + 1)} = \frac{x^2(A + B) + x(A + B + C) + A + C}{(x + 1)(x^2 + x + 1)}
\]

che è del tipo (\(*)\) con:
\[P_1(x) = x^2 - 2x - 1, \quad P_2(x) = (x+1)(x^2 + x + 1), \quad M(x) = x^2(A + B) + x(A + B + C) + A + C\]

Per il principio di identità dei polinomi risulta:
\[\begin{cases}
A + B = 1 \\
A + B + C = -2 \\
A + C = -1
\end{cases} \quad \Rightarrow \quad \begin{cases}
B = -1 \\
C = -3
\end{cases} \quad \Rightarrow
\]

Si avrà, infine, tenendo conto dell’esempio \(\zeta'\):
\[
\int \frac{x^2 - 2x - 1}{(x + 1)(x^2 + x + 1)} \, dx = 2 \int \frac{dx}{x + 1} + 3 \int \frac{-x - 3}{x^2 + x + 1} \, dx = \\
= 2 \log |x + 1| - \int \frac{x}{x^2 + x + 1} \, dx - 3 \int \frac{dx}{x^2 + x + 1} = \\
= 2 \log |x + 1| - \int \frac{2x}{2(x^2 + x + 1)} \, dx - 3 \int \frac{dx}{x^2 + x + 1} = \\
= 2 \log |x + 1| - \frac{1}{2} \int \frac{2x + 1 - 1}{x^2 + x + 1} \, dx - 3 \int \frac{dx}{x^2 + x + 1} =
\]
= 2\log|x+1| - \frac{1}{2} \int \frac{2x+1}{x^2+x+1} \, dx + \frac{1}{2} \int \frac{dx}{x^2+x+1} - 3 \int \frac{dx}{x^2+x+1} = \\
= 2\log|x+1| - \frac{1}{2} \log\left(x^2+x+1\right) - \frac{5}{2} \int \frac{dx}{x^2+x+1} = \\
= 2\log|x+1| - \frac{1}{2} \log\left(x^2+x+1\right) - \frac{5}{2} \left(\frac{2\sqrt{3}}{3} \arctg \frac{2x+1}{\sqrt{3}}\right) + c = \\
= 2\log|x+1| - \frac{1}{2} \log\left(x^2+x+1\right) - \frac{5\sqrt{3}}{3} \arctg \frac{2x+1}{\sqrt{3}} + c

Analizziamo ora, invece, attraverso degli esempi, il caso in cui il numeratore sia un polinomio di primo grado e non sia la derivata del denominatore.

ESEMPI

k) \[\int \frac{x+1}{x^2+4} \, dx \]

Si osservi, in primo luogo, che:

\[P_1(x) = x+1 \quad (m=1) \]
\[P_2(x) = x^2+4 \quad (n=2) \quad \text{con} \quad \Delta = -16 < 0 \]

per cui le soluzioni del polinomio \(P_2(x) \) sono complesse e coniugate:

\[\alpha_1 = 2i \quad \text{ed} \quad \alpha_2 = -2i \]

Essendo, pertanto, \(P_2(x) \) della forma \((\alpha''') \), in virtù della (\(\delta \)) e della precedente osservazione, si può scrivere:

\[
\int \frac{x+1}{x^2+4} \, dx = \int \frac{x}{x^2+4} \, dx + \int \frac{1}{x^2+4} \, dx = \int \frac{2x}{2\left(x^2+4\right)} \, dx + \int \frac{1}{x^2+4} \, dx = \\
= \frac{1}{2} \log\left(x^2+4\right) + \int \frac{1}{x^2+4} \, dx = \frac{1}{2} \log\left(x^2+4\right) + \frac{1}{4} \int \frac{dx}{\left(\frac{x}{2}\right)^2+1} = \\
= \frac{1}{2} \log\left(x^2+4\right) + \frac{1}{4} \cdot 2 \int \frac{1}{\left(\frac{x}{2}\right)^2+1} \, dx = \frac{1}{2} \log\left(x^2+4\right) + \frac{1}{2} \log\left(x^2+4\right) + \frac{1}{2} \int \frac{1}{\left(\frac{x}{2}\right)^2+1} \, dx = \\
= \sqrt{\log\left(x^2+4\right)} + \frac{1}{2} \arctg \frac{x}{2} + c
\]
\[\kappa' \int \frac{x - 3}{x^2 + x + 4} \, dx \]

Si osservi, in primo luogo, che:

\[P_1(x) = x - 3 \quad (m = 1) \]
\[P_2(x) = x^2 + x + 4 \quad (n = 2) \]

con \[\Delta = 1 - 16 = -15 < 0 \]

per cui le soluzioni del polinomio \(P_2(x) \) sono complesse e coniugate:

\[\alpha_1 = \frac{-1 + \sqrt{15} \, i}{2} \quad \text{ed} \quad \alpha_2 = \frac{-1 - \sqrt{15} \, i}{2} \]

Essendo, pertanto, \(P_2(x) \) della forma \((\alpha''')\), in virtù della \((\delta)\) e della precedente osservazione, si può scrivere:

\[\int \frac{x - 3}{x^2 + x + 4} \, dx = \int \frac{2 \cdot (x - 3)}{2 \cdot (x^2 + x + 4)} \, dx = \frac{1}{2} \int \frac{2x - 6}{x^2 + x + 4} \, dx = \frac{1}{2} \int \frac{2x - 6 + 7 - 7}{x^2 + x + 4} \, dx = \]

\[= \frac{1}{2} \int \frac{2x + 1}{x^2 + x + 4} \, dx - \frac{1}{2} \int \frac{7}{x^2 + x + 4} \, dx = \frac{1}{2} \log (x^2 + x + 4) - \frac{7}{2} \int \frac{1}{x^2 + x + 4} \, dx = \]

\[= \sqrt{\log (x^2 + x + 4)} - \frac{7}{2} \cdot \frac{1}{15} \int \frac{dx}{\left(\frac{x + \frac{1}{2}}{\sqrt{15}} \right)^2 + 1} \]

\[= \sqrt{\log (x^2 + x + 4)} - \frac{7}{2} \cdot \frac{1}{15} \sqrt{\frac{15}{2}} \int \frac{dx}{\left(\frac{x + \frac{1}{2}}{\sqrt{15}} \right)^2 + 1} \]

\[= \sqrt{\log (x^2 + x + 4)} - \frac{7}{15} \sqrt{\frac{15}{2}} \int \frac{dx}{\left(\frac{2}{\sqrt{15}} (\frac{2}{15})^2 + 1 \right)} \]

\[= \sqrt{\log (x^2 + x + 4)} - \frac{14}{15} \sqrt{\frac{15}{2}} \int \frac{dx}{\left(\frac{2x + 1}{\sqrt{15}} \right)^2 + 1} = \sqrt{\log (x^2 + x + 4)} - \frac{7\sqrt{15}}{15} \arctg \frac{2x + 1}{\sqrt{15}} + c \]

Osservazione. Riportiamo, con la presente osservazione, un quadro completo relativo alla decomposizione delle frazioni algebriche (integrande):

\[\frac{1}{(x - \alpha_1) \cdot (x - \alpha_2)} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} \]

(cfr. esempio \(\beta \))

24
\[
\frac{ax + b}{(x - \alpha_1) \cdot (x - \alpha_2)} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} \quad \text{(cfr. esempio } \beta')
\]
\[
\frac{1}{(x - \alpha_1) \cdot (x - \alpha_2) \cdot (x - \alpha_3)} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} + \frac{C}{x - \alpha_3} \quad \text{(cfr. esempio } \gamma')
\]
\[
\frac{ax + b}{(x - \alpha_1) \cdot (x - \alpha_2) \cdot (x - \alpha_3)} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} + \frac{C}{x - \alpha_3} \quad \text{(cfr. esempio } \gamma'')
\]
\[
\frac{ax^2 + bx + c}{(x - \alpha_1) \cdot (x - \alpha_2) \cdot (x - \alpha_3)} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} + \frac{C}{x - \alpha_3} \quad \text{(cfr. esempio } \delta')
\]
\[
\frac{1}{(x - \alpha_1) \cdot (x - \alpha_2)^2} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} + \frac{C}{(x - \alpha_2)^2} \quad \text{(cfr. esempio } \delta'')
\]
\[
\frac{ax + b}{(x - \alpha_1) \cdot (x - \alpha_2)^2} = \frac{A}{x - \alpha_1} + \frac{B}{x - \alpha_2} + \frac{C}{(x - \alpha_2)^2} \quad \text{(cfr. esempio } \delta''')
\]
\[
\frac{1}{(x - \alpha_1) \cdot (x^2 + px + q)} = \frac{A}{x - \alpha_1} + \frac{Bx + C}{x^2 + px + q} \quad \Delta = p^2 - 4q < 0 \quad \text{(cfr. esempio } \eta')
\]
\[
\frac{ax + b}{(x - \alpha_1) \cdot (x^2 + px + q)} = \frac{A}{x - \alpha_1} + \frac{Bx + C}{x^2 + px + q} \quad \Delta = p^2 - 4q < 0 \quad \text{(cfr. esempio } \theta')
\]
\[
\frac{ax^2 + bx + c}{(x - \alpha_1) \cdot (x^2 + px + q)} = \frac{A}{x - \alpha_1} + \frac{Bx + C}{x^2 + px + q} \quad \Delta = p^2 - 4q < 0 \quad \text{(cfr. esempio } \iota')
\]

Se, invece, la funzione integranda è il reciproco di un trinomio, ovvero della forma:

\[
\int \frac{dx}{ax^2 + bx + c}
\]

allora si possono verificare i seguenti tre casi:

PRIMO CASO:
\[
\Delta = b^2 - 4ac > 0
\]
\[
\int \frac{dx}{ax^2 + bx + c} = \frac{1}{a \cdot (\alpha_1 - \alpha_2)} \cdot \log \left| \frac{x - \alpha_1}{x - \alpha_2} \right| + c \quad \text{(cfr. esempio } \beta')
\]

essendo \(\alpha_1, \alpha_2 = \frac{-b \pm \sqrt{\Delta}}{2a} \) le soluzioni reali e distinte del trinomio \(ax^2 + bx + c \)
SECONDO CASO: $\Delta = b^2 - 4ac = 0$

$$\int \frac{dx}{ax^2 + bx + c} = \frac{-2}{D(ax^2 + bx + c)} + c$$

(cfr. esempio ε))

essendo $\alpha_1 = \alpha_2 = -\frac{b}{2a}$ le soluzioni reali e coincidenti del trinomio $ax^2 + bx + c$

TERZO CASO: $\Delta = b^2 - 4ac < 0$

$$\int \frac{dx}{ax^2 + bx + c} = \frac{2}{\sqrt{-\Delta}} \cdot \arctg \frac{D(ax^2 + bx + c)}{\sqrt{-\Delta}} + c$$

(cfr. esempio ζ'))

essendo $\alpha_1 = \frac{-b \pm \sqrt{\Delta}}{2a}$ le soluzioni complesse e coniugate del trinomio $ax^2 + bx + c$

e) INTEGRAZIONE DELLE FUNZIONI IRRAZIONALI

Nel presente paragrafo, denotata con $R(x_1, x_2, ..., x_n)$ una funzione razionale (intera o fratta) nelle variabili indicate, ovvero una funzione del tipo:

$$y = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$

ove $n \geq 1$ è un numero intero ed $a_0, a_1, ..., a_{n-1}, a_n$ sono costanti assegnate con $a_0 \neq 0$, verranno esaminati alcuni tipi di integrali di funzioni irrazionali in x ma riconducibili, mediante opportune sostituzioni, ad integrali di funzioni razionali nella nuova variabile.

PRIMO CASO

(1) $$\int R \left[x, \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{m_1}, \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{m_2}, ..., \left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)^{m_r} \right] dx$$

do $\alpha, \beta, \gamma, \delta$ sono costanti, $\alpha \delta - \beta \gamma \neq 0$ (perché se fosse $\alpha \delta - \beta \gamma = 0$ allora $\frac{\alpha x + \beta}{\gamma x + \delta}$ si ridurrebbe ad una costante, ovvero la funzione integranda R sarebbe una funzione razionale in x) ed $\frac{m_1}{n_1}, \frac{m_2}{n_2}, ..., \frac{m_r}{n_r}$ sono numeri razionali noti che supporremo, per comodità, ridotti ai minimi termini. Indicato, quindi, con μ il minimo comune multiplo dei numeri (positivi) $n_1, n_2, ..., n_r$, attraverso la sostituzione:

(1.1) $$\frac{\alpha x + \beta}{\gamma x + \delta} = t^\mu$$

l'integrale di partenza si trasforma nell'integrale di una funzione razionale in t.

26
Tra gli integrali appartenenti a questa categoria bisogna senz’altro menzionare i seguenti tipi:

\[a) \quad \int R \left[x, (\alpha x + \beta)^{\frac{m}{n}}, (\alpha x + \beta)^{\frac{m}{n_2}}, \ldots, (\alpha x + \beta)^{\frac{m}{n_r}} \right] dx \]

\[b) \quad \int R \left[x, x^{\frac{m}{n}}, x^{\frac{m_2}{n_2}}, \ldots, x^{\frac{m_r}{n_r}} \right] dx \]

ESEMPI

\[\alpha) \quad \int \frac{dx}{\sqrt{x}+\sqrt{x}} = \int \frac{dx}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} \]

Risulta:

\[\frac{m_1}{n_1} = \frac{1}{2}, \quad \frac{m_2}{n_2} = \frac{1}{3}, \quad \mu = \text{m.c.m.} (n_1 = 2, n_2 = 3) = 6 \]

Posto, quindi, per la (1.1):

\[x = t^6 \quad \Rightarrow \quad dx = 6t^5 \, dt \quad (t > 0) \]

si ha, ricordando la formula di integrazione delle funzioni razionali qualora il grado del numeratore sia maggiore di quello del denominatore:

\[\int \frac{dx}{\sqrt{x}+\sqrt{x}} = \int \frac{dx}{x^{\frac{1}{2}} + x^{\frac{1}{3}}} = \int \frac{6t^5 \, dt}{(t^6)^{\frac{1}{2}} + (t^6)^{\frac{1}{3}}} = \int \frac{t^5 \, dt}{t^3 + t^2} = 6 \int \frac{t^3 \, dt}{t+1} = \]

\[= 6 \int \left(t^2 - t + 1 - \frac{1}{t+1} \right) dt = 6 \left(\frac{t^3}{3} - \frac{t^2}{2} + t + \log |t+1| \right) + c = 2t^3 - 3t^2 + 6t - 6\log |t+1| + c = \]

\[= 2\sqrt{x} - 3\sqrt{x} + 6\sqrt{x} - 6\log (\sqrt{x} + 1) + c \]

\[\beta) \quad \int \sqrt{\frac{x}{1-x}} dx = \int \left(\frac{x}{1-x} \right)^{\frac{1}{2}} dx \]

Essendo:

\[\frac{m_2}{n_1} = \frac{1}{2} \]

poniamo, per la (1.1):

\[\frac{x}{1-x} = t^2 \quad \Rightarrow \quad x = \frac{t^2}{1+t^2} \quad \Rightarrow \quad dx = \frac{2t}{(1+t^2)^2} dt \quad (t > 0) \]

da cui si ha:

\[\int \sqrt{\frac{x}{1-x}} dx = \int \left(\frac{x}{1-x} \right)^{\frac{1}{2}} dx = \int \left(t^2 \right)^{\frac{1}{2}} \cdot \frac{2t}{(1+t^2)^2} dt = \int t \cdot \frac{2t}{(1+t^2)^2} dt = \int \frac{2t^2}{(1+t^2)^2} dt = \]
Poiché il polinomio \((t^2 + 1)^2 \) ha gli zeri \(\pm i \) entrambi doppi si può scrivere:

\[
\frac{1}{(t^2 + 1)^2} = \frac{At + B}{t^2 + 1} + \frac{d}{dt} \left(\frac{Ct + D}{t^2 + 1} \right) = \frac{A(t^2 + 1) - (Ct + D)2t}{t^2 + 1} = \\
= \frac{At + B}{(t^2 + 1)^2} + \frac{Ct^2 + C - 2Ct^2 - 2Dt}{(t^2 + 1)^2} = \frac{(At + B)(t^2 + 1) + Ct^2 + C - 2Ct^2 - 2Dt}{(t^2 + 1)^2} = \\
= \frac{At^3 + (B - C)t^2 + (A - 2D)t + B + C}{t^2 + 1}
\]

cioè:

\[
\begin{align*}
A &= 0 \\
B - C &= 0 \\
A - 2D &= 0 \\
B + C &= 1
\end{align*}
\Rightarrow \begin{align*}
A &= 0 \\
B &= \frac{1}{2} \\
C &= \frac{1}{2} \\
D &= 0
\end{align*}
\]

Ne segue, quindi, che:

\[
\int \frac{1}{(t^2 + 1)^2} dt = \int \frac{1}{2} dt + \int \frac{1}{2} \frac{t}{t^2 + 1} dt = \frac{1}{2} \int \frac{dt}{t^2 + 1} + \frac{1}{2} \frac{t}{t^2 + 1} = \frac{1}{2} \arctg t + \frac{t}{2(t^2 + 1)} + c
\]

Dunque:

\[
\int \frac{x}{\sqrt{1-x}} dx = 2\arctg t - 2 \left[\frac{1}{2} \arctg + \frac{t}{2(t^2 + 1)} \right] + c = 2\arctg t - \arctg - \frac{t}{t^2 + 1} + c = \\
= \arctg - \frac{t}{t^2 + 1} + c = \arctg \sqrt{\frac{x}{1-x}} - \sqrt{\frac{x}{1-x} + 1} + c = \arctg \sqrt{\frac{x}{1-x}} - \sqrt{x(1-x)} + c
\]
SECONDO CASO

\[(2) \quad \int R \left(x, \sqrt{ax^2 + bx + c} \right) dx \]
dove \(a, b, c \) sono costanti tali che \(b^2 - 4ac \neq 0 \) (perché se fosse \(b^2 - 4ac = 0 \), con \(a > 0 \), allora la funzione integranda \(R \) si ridurrebbe ad una funzione razionale in \(x \); se, invece, si verificasse \(b^2 - 4ac < 0 \) ed \(a < 0 \), allora la \(R \) non sarebbe una funzione reale).

Indicati, quindi, con \(x_i \) ed \(x_2 \) le soluzioni del trinomio \(ax^2 + bx + c \) si ottiene:

\[
\sqrt{ax^2 + bx + c} = \sqrt{a(x - x_i)(x - x_2)} = |x - x_i| \sqrt{\frac{a(x - x_2)}{(x - x_i)}}
\]

per cui l’integrale di partenza può essere ricondotto ad un integrale del tipo:

\[
\int R \left[x, |x - x_i| \left(\frac{a(x - x_2)}{x - x_i} \right)^{\frac{1}{2}} \right] dx
\]

ovvero del tipo (1). Operando ora la sostituzione:

\[
a(x - x_2) = t^2 \quad \Rightarrow \quad (2.1) \quad \sqrt{ax^2 + bx + c} = (x - x_i) t
\]

l’integrale proposto non è altro che l’integrale di una funzione razionale in \(t \).

Il medesimo scopo, però, si raggiunge anche con una qualsiasi delle sostituzioni seguenti:

\[
(2.2) \quad \sqrt{ax^2 + bx + c} = \sqrt{ax + t}
\]

\[
(2.3) \quad \sqrt{ax^2 + bx + c} = xt + \sqrt{c}
\]

che, in numerosi casi possono avere dei requisiti di preferenza anche per la rapidità dei calcoli.

ESEMPI

\(\gamma \) \quad \int \frac{dx}{\sqrt{x^2 - a^2}} \quad (a \) costante non nulla \)

Posto, per la (2.1):

\[
\sqrt{x^2 - a^2} = (x - a) t \quad \quad \left[(x - a) t > 0 \right]
\]

si ha:

\[
x^2 - a^2 = (x - a)^2 t^2 \quad \Rightarrow \quad (x + a)(x - a) = (x - a)^2 t^2 \quad \Rightarrow \quad x + a = (x - a) t^2 \quad \Rightarrow
\]

\[
\Rightarrow \quad x = xt^2 - at^2 - a \quad \Rightarrow \quad x - xt^2 = -at^2 - a \quad \Rightarrow \quad x = \frac{-at^2 - a}{1 - t^2} = \frac{a(t^2 + 1)}{t^2 - 1} \quad \Rightarrow
\]

\[
\Rightarrow \quad dx = \frac{a \left[2t(t^2 - 1) - 2t(t^2 + 1) \right]}{(t^2 - 1)^2} dt = \frac{2at^3 - 2at - 2at^3 - 2at}{(t^2 - 1)^2} dt = \frac{-4at}{(t^2 - 1)^2} dt
\]
da cui segue:

\[
\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{1}{a(r^2 + 1) - a} \left(\frac{-4at}{t(r^2 - 1)^2} \right) dt = \int \frac{-4at(t^2 - 1)}{t(at^2 + a - at^2 + a)(t^2 - 1)^2} dt =
\]

\[
= \int \frac{-4a}{2a(t^2 - 1)} dt = \int \frac{-2}{t^2 - 1} dt = -2 \int \frac{dt}{t^2 - 1}
\]

Resta da calcolare, quindi, l'integrale che figura al secondo membro:

\[
\int \frac{dt}{t^2 - 1} = \int \frac{dt}{(t-1)(t+1)}
\]

Applicando la regola d'integrazione per scomposizione risulta:

\[
\frac{1}{t^2 - 1} = \frac{A}{t+1} + \frac{B}{t-1} = \frac{A(t-1) + B(t+1)}{(t+1)(t-1)} = \frac{(A+B)t - A + B}{(t+1)(t-1)}
\]

cioè:

\[
\begin{cases}
A + B = 0 \\
-A + B = 1
\end{cases} \quad \Rightarrow \quad \begin{cases}
A = -\frac{1}{2} \\
B = \frac{1}{2}
\end{cases}
\]

Pertanto:

\[
\int \frac{dt}{t^2 - 1} = -\frac{1}{2} \int \frac{dt}{t+1} + \frac{1}{2} \int \frac{dt}{t-1} = -\frac{1}{2} \log|t+1| + \frac{1}{2} \log|t-1| + c
\]

Dunque:

\[
\int \frac{dx}{\sqrt{x^2 - a^2}} = -2 \int \frac{dt}{t^2 - 1} = -2 \left[-\frac{1}{2} \log|t+1| + \frac{1}{2} \log|t-1| \right] + c = \log|t+1| - \log|t-1| + c =
\]

\[
= \log \left| \frac{\sqrt{x^2 - a^2}}{x-a} + 1 \right| - \log \left| \frac{\sqrt{x^2 - a^2}}{x-a} - 1 \right| + c = \log \left| \frac{x+a}{x-a} + 1 \right| - \log \left| \frac{x+a}{x-a} - 1 \right| + c =
\]

\[
= \log \left| 2x \sqrt{x-a} + 2 \frac{x+a}{x-a} \right| + c = \log \left| 2 \sqrt{x^2-a^2} + 2 \frac{x+a}{x-a} \right| + c =
\]
\[
= \log \left| \frac{x\sqrt{x-a} + (x-a)\sqrt{x+a}}{a\sqrt{x-a}} \right| + c = \log \left| \frac{x\sqrt{x-a} + (x-a)\sqrt{x+a}}{a\sqrt{x-a}} \right| + c = \\
= \log \left| \frac{x(x-a) + (x-a)\sqrt{x^2-a^2}}{a(x-a)} \right| + c = \log \left| \frac{x + \sqrt{x^2-a^2}}{a} \right| + c = \log \left| \frac{x + \sqrt{x^2-a^2}}{a} \right| + c'
\]

\[\delta) \quad \int \frac{dx}{\sqrt{x^2 + a^2}} \quad (a \text{ costante non nulla)}
\]

Poniamo, in virtù della (2.2):
\[
\sqrt{x^2 + a^2} = x + t \quad (x + t > 0)
\]
da cui:
\[
x^2 + a^2 = (x + t)^2 \quad \Rightarrow \quad x^2 + a^2 = x^2 + 2xt + t^2 \quad \Rightarrow \quad x = \frac{a^2 - t^2}{2t} \quad \Rightarrow \\
\Rightarrow \quad \sqrt{x^2 + a^2} = x + t = \frac{a^2 - t^2}{2t} + t = \frac{a^2 - t^2 + 2t^2}{2t} = \frac{a^2 + t^2}{2t} \quad \Rightarrow \\
\Rightarrow \quad dx = \frac{-2t(2t) - 2(a^2 - t^2)}{4t^2} \ dt = \frac{-4t^2 - 2a^2 + 2t^2}{4t^2} = \frac{-2t^2 - 2a^2}{4t^2} \ dt = \frac{-t^2 - a^2}{2t^2} \ dt = \\
\Rightarrow \quad \int \frac{dx}{\sqrt{x^2 + a^2}} = \int \frac{1}{a^2 + t^2} \left(-\frac{t^2 + a^2}{2t^2} \right) dt = -\int \frac{2t}{a^2 + t^2} \cdot \frac{t^2 + a^2}{2t^2} dt = -\int \frac{1}{t} dt = -\log |t| + c = \\
\Rightarrow \quad \int \frac{dx}{\sqrt{x^2 + a^2}} = -\log \left| \sqrt{x^2 + a^2} - x \right| + c
\]

Osservazione. Si noti che l'integrale \(\delta)\) può essere risolto anche utilizzando il metodo di integrazione per parti ma i calcoli risultano senz'altro più laboriosi (lo studente verifichi ciò per esercizio!)

\[\epsilon) \quad \int \frac{dx}{\sqrt{x^2 - 3x + 2}}
\]

Poniamo, per la (2.2):
\[
\sqrt{x^2 - 3x + 2} = x + t \quad (x + t > 0)
\]
da cui:
\[
x^2 - 3x + 2 = (x + t)^2 \quad \Rightarrow \quad x^2 - 3x + 2 = x^2 + 2xt + t^2 \quad \Rightarrow \quad x = \frac{2 - t^2}{2t + 3} \quad \Rightarrow \\
\Rightarrow \quad \sqrt{x^2 - 3x + 2} = x + t = \frac{2 - t^2}{2t + 3} + t = \frac{2 - t^2 + 2t^2 + 3t}{2t + 3} = \frac{t^2 + 3t + 2}{2t + 3} = \frac{(t+1)(t+2)}{2t+3} \quad \Rightarrow \\
\]

31
dunque:

\[
\int \frac{dx}{\sqrt{x^2 - 3x + 2}} = \int \frac{1}{(t + 1)(t + 2)} \cdot \left(-2 \cdot \frac{(t + 1)(t + 2)}{(2t + 3)^2} \right) dt = -\int \frac{2}{2t + 3} dt = -\log|2t + 3| + c =
\]

\[
= -\log\left|2\sqrt{x^2 - 3x + 2} - 2x + 3\right| + c
\]

TERZO CASO

\[
\int R\left(x, \sqrt{ax + b}, \sqrt{cx + d}\right) dx
\]

dove \(a, b, c, d\) sono costanti.

In tal caso, quindi, mediante le sostituzioni:

\[
(3.1) \quad \sqrt{ax + b} = t \]
\[
(3.2) \quad \sqrt{cx + d} = t
\]

si perviene ad un integrale del tipo (2).

ESEMPI

\[
\int \frac{\sqrt{x}}{\sqrt{x + 1} + 1} dx
\]

Per la (3.1) poniamo:

\[
\sqrt{x} = t \quad (t > 0) \quad \Rightarrow \quad x = t^2 \quad \Rightarrow \quad dx = 2tdt
\]

Applicando la sostituzione all’integrale di partenza si ottiene:

\[
\int \frac{\sqrt{x}}{\sqrt{x + 1} + 1} dx = \int \frac{t}{\sqrt{t^2 + 1} + 1} \cdot 2tdt = 2\int \frac{t^2}{\sqrt{t^2 + 1} + 1} dt
\]

Si osservi ora che l’integrale al secondo membro è del tipo (2) per cui, per il suo calcolo, basta eseguire la sostituzione (2.2), ovvero è sufficiente porre:

\[
\sqrt{t^2 + 1} = t + z \quad (t + z > 0) \quad \Rightarrow \quad t^2 + 1 = (t + z)^2 = t^2 + 2tz + z^2 \quad \Rightarrow \quad t = \frac{1 - z^2}{2z} \quad \Rightarrow
\]

\[
\Rightarrow \quad \sqrt{t^2 + 1} = t + z = \frac{1 - z^2}{2z} + z = \frac{1 - z^2 + 2z^2}{2z} = \frac{1 + z^2}{2z} \quad \Rightarrow
\]

\[
\Rightarrow \quad dt = \frac{-2z \cdot 2z - 2(1 - z^2)}{4z^2} dz = \frac{-4z^2 - 2 + 2z^2}{4z^2} dz = \frac{-2z^2 - 2}{4z^2} dz = \frac{-z^2 + 1}{2z^2} dz
\]
Sostituendo si ottiene:

\[
\int \frac{\sqrt{x}}{\sqrt{x+1}+1} \, dx = 2 \int \frac{t^2}{\sqrt{t^2 + 1}+1} \, dt = 2 \int \frac{(1-z^2)^2}{4z^2} \cdot \frac{-z^2+1}{2z} \, dz = \\
= -2 \int \frac{(1-z^2)^2}{4z^2} \cdot \frac{2z}{1+z^2+2z} \cdot \frac{z^2+1}{2z^2} \, dz = - \int \frac{(1-z^2)^2}{2z^3} \cdot \frac{z^2+1}{(z+1)^2} \, dz = \\
= - \int \left[\frac{(1-z)(1+z)}{2z^3} \cdot \frac{z^2+1}{(z+1)^2} \right] \, dz = - \int \frac{(1-z^2)(z^2+1)}{2z^3} \, dz = - \frac{1}{2} \int \frac{(1-2z+z^2)(z^2+1)}{z^3} \, dz = \\
= - \frac{1}{2} \int \frac{z^2+1-2z^3-2z^4-z^2}{z^3} \, dz = - \frac{1}{2} \int \frac{z^2-2z^3+2z^2-2z+1}{z^3} \, dz = \\
= \frac{z}{4} + z - \log|z| - \frac{1}{z} + \frac{1}{4z^2} + c
\]

Ricordando ora che:

\[
\sqrt{x} = t \quad \Rightarrow \quad \sqrt{t^2+1} = z + t \quad \Rightarrow \quad z = \sqrt{t^2+1} - t \quad \Rightarrow \quad z = \sqrt{x+1} - \sqrt{x}
\]

si ottiene, infine:

\[
\int \frac{\sqrt{x}}{\sqrt{x+1}+1} \, dx = 2 \int \frac{t^2}{\sqrt{t^2 + 1}+1} \, dt = - \frac{z^2}{4} + z - \log|z| - \frac{1}{z} + \frac{1}{4z^2} + c = \\
= - \frac{(\sqrt{x+1} - \sqrt{x})^2}{4} + \sqrt{x+1} - \sqrt{x} - \log|\sqrt{x+1} - \sqrt{x}| - \frac{1}{\sqrt{x+1} - \sqrt{x}} + \frac{1}{4(\sqrt{x+1} - \sqrt{x})} + c
\]

QUARTO CASO

\[
(4) \quad \int x^q \left(a + bx^r\right)^s \, dx
\]

dove \(a, b, q, r, s\) sono costanti. Supposto ora che i numeri \(q, r\) ed \(s\) siano razionali, l'integrale di cui sopra si calcola, come si può verificare, mediante funzioni elementari (razionali, irrazionali, esponenziali, logaritmiche, potenze o funzioni composte mediante esse e legate fra loro dai segni delle operazioni elementari) se e solo se almeno uno dei tre numeri:

\[
s, \quad \frac{q+1}{r}, \quad s+\frac{q+1}{r}
\]

è intero.
ESEMPI

\[\int \frac{dx}{x(1+\sqrt{x})^2} \]

Si osservi che l’integrale \(\eta \) è del tipo (4) risultando:

\[\int \frac{dx}{x(1+\sqrt{x})^2} = \int x^{-1}\left(1+x^{1/2}\right)^{-2} \, dx \]

con \(q = -1 \), \(r = \frac{1}{2} \), \(s = -2 \), \(a = b = 1 \). Poiché \(-2\) è intero l’integrale di partenza può essere scritto in termini di funzioni elementari. Precisamente, poniamo:

\[x^{1/2} = \sqrt{x} = t \quad (t > 0) \quad \Rightarrow \quad x = t^2 \quad \Rightarrow \quad dx = 2tdt \]

Applicando tale sostituzione all’integrale si ottiene:

\[\int \frac{dx}{x(1+\sqrt{x})^2} = \int \frac{2t}{t^2(1+t)} \, dt = 2 \int \frac{dt}{t(1+t)} \]

Del resto, utilizzando il metodo di integrazione per decomposizione delle funzioni razionali, si ha:

\[\frac{1}{t(t+1)^2} = \frac{A}{t} + \frac{B}{t+1} + \frac{C}{(t+1)^2} = \frac{A(t+1)^2 + Bt(t+1) + Ct}{t(t+1)^2} = \frac{At^2 + 2At + A + Bt^2 + Bt + Ct}{t(t+1)^2} = \]

\[= \frac{t^2(A + B) + t(2A + B + C) + A}{t(t+1)^2} \]

da cui:

\[\begin{cases} A + B = 0 \\ 2A + B + C = 0 \quad \Rightarrow \quad A = 1 \\ A = 1 \quad \Rightarrow \quad B = -1 \\ C = -1 \end{cases} \]

Dunque:

\[\int \frac{dx}{x(1+\sqrt{x})^2} = 2 \int \frac{dt}{t(1+t)} = 2 \left(\int \frac{dt}{t} - \int \frac{1}{t+1} \, dt - \int \frac{1}{(t+1)^2} \, dt \right) = \]

\[= 2\log|t| - 2\log|t+1| + \frac{2}{t+1} + c = 2\log|t| + \frac{2}{t+1} + c = 2\log\left|\frac{\sqrt{x}}{\sqrt{x+1}}\right| + \frac{2}{\sqrt{x+1}} + c \]

\(\theta \)

\[\int \frac{\sqrt{x+1}}{\sqrt{x}} \, dx \]

L’integrale \(\theta \) è del tipo (4) essendo:

\[\int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \, dx = \int x^{-1/2} \left(1+x^{1/2}\right)^{1/2} \, dx \]
con $q = -\frac{1}{2}$, $r = \frac{1}{4}$, $s = \frac{1}{3}$, $a = b = 1$. Poiché:

$$\frac{q+1}{r} = 2$$

è intero l’integrale di partenza può essere scritto in termini di funzioni elementari. Precisamente, poniamo:

$$1+\frac{x^q}{x} = t^3 \quad (t > 0) \quad \Rightarrow \quad x = (t^3 - 1)^4 \quad \Rightarrow$$

$$\Rightarrow \quad dx = 4(t^3 - 1)^3 \cdot 3t^2 \ dt = 12t^2 (t^3 - 1)^3 \ dt$$

Applicando tale sostituzione all’integrale si ottiene:

$$\int \frac{1}{\sqrt[4]{x}} \ dx = \int \frac{t}{(t^3 - 1)^{\frac{3}{4}}} \cdot 12t^2 (t^3 - 1)^3 \ dt = 12t^3 (t^3 - 1) dt = 12 \int (t^6 - t^3) \ dt =$$

$$= 12 \left(\frac{t^7}{7} - \frac{t^4}{4} \right) + c = \frac{12}{7} t^7 - 3t^4 = \frac{12}{7} \sqrt[4]{1+\frac{x^q}{x}}^7 - 3\sqrt[4]{1+\frac{x^q}{x}}^4 + c$$

1) $$\int \frac{x}{x^2 \sqrt[2]{1+x^3}} \ dx$$

L’integrale è del tipo (4) essendo:

$$\int \frac{x}{x^2 \sqrt[2]{1+x^3}} = \int x^{-2} \left(1+x^3\right)^{-\frac{2}{3}} \ dx$$

con $q = -2$, $r = 3$, $s = -\frac{2}{3}$, $a = b = 1$.

Poiché:

$$s + \frac{q+1}{r} = -1$$

è intero l’integrale di partenza può essere scritto in termini di funzioni elementari. Precisamente, poniamo:

$$1+x^{-3} = 1 + \frac{1}{x^3} = t^3 \quad (t > 0) \quad \Rightarrow \quad x = (t^3 - 1)^{-\frac{3}{4}} \quad \Rightarrow$$

$$\Rightarrow \quad dx = -\frac{1}{3}(t^3 - 1)^{-\frac{3}{4}} \cdot 3t^2 \ dt = -t^2 (t^3 - 1)^{-\frac{3}{4}} \ dt$$

Applicando tale sostituzione all’integrale si ottiene:

$$\int \frac{x}{x^2 \sqrt[2]{1+x^3}} = -\int \frac{1}{(t^3 - 1)^{\frac{3}{4}} \sqrt[2]{1+(t^3 - 1)^{-\frac{3}{4}}}} \cdot t^2 (t^3 - 1)^{-\frac{3}{4}} \ dt =$$

$$= -\int (t^3 - 1)^{-\frac{3}{4}} \cdot 1 + \frac{1}{t^3 - 1} \right]^\frac{3}{4} \cdot t^2 (t^3 - 1)^{-\frac{3}{4}} \ dt = -\int t^2 (t^3 - 1)^{-\frac{3}{4}} \cdot \left[\frac{t^3}{t^3 - 1} \right]^{-\frac{3}{4}} \ dt =$$

35
\[
= \int t^2 (t^3 - 1)^{\frac{2}{3}} \cdot \frac{(t^3)^{\frac{1}{3}}}{(t^3 - 1)^{\frac{2}{3}}} dt = -\int dt = -t + c = \sqrt[3]{t + 1} + c = \sqrt[3]{1 + \frac{1}{x}} + c
\]

6) **Integrazione delle funzioni trascendenti**
Nel presente paragrafo, denotata con \(R(x_1, x_2, ..., x_n) \) una funzione razionale (intera o fratta) nelle variabili indicate, ovvero una funzione del tipo:

\[
y = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n
\]
ove \(n \geq 1 \) è un numero intero ed \(a_0, a_1, ..., a_{n-1}, a_n \) sono costanti assegnate con \(a_0 \neq 0 \), verranno esaminati alcuni tipi, tra i più noti, di integrali di funzioni trascendenti in \(x \) ma riconducibili, mediante opportune sostituzioni, ad integrali di funzioni razionali nella nuova variabile.

Primo caso

(4) \[\int R(a^{x+\beta}) dx \]
dove \(a, \alpha, \beta, \gamma, \delta \) sono costanti, \(a > 0 \) ed \(a \neq 1 \). Ponendo ora:

\[
(4.1) \quad a^{\alpha x + \beta} = t
\]
oppure:

\[
(4.2) \quad a^\alpha = t
\]
ci si riconduce all'integrale di una funzione razionale in \(t \).
In particolare:

a) \[a = e \quad \Rightarrow \quad \int R(e^{\alpha x + \beta}) dx \]
b) \[\beta = 0 \quad \Rightarrow \quad \int R(a^\alpha) dx \quad e \quad \int R(e^{\alpha x}) dx \]

Esempio

\(\alpha \) \[\int \frac{dx}{1 + e^{2x}} \]
Ponendo, per la (4.2):

\[
e^{2x} = t \quad \Rightarrow \quad x = \frac{1}{2} \ln t \quad \Rightarrow \quad dx = \frac{1}{2} \cdot \frac{1}{t} dt = \frac{1}{2t} dt
\]
si ottiene:

\[
\int \frac{dx}{1 + e^{2x}} = \int \frac{1}{1 + t} \cdot \frac{1}{2t} dt = \frac{1}{2} \int \frac{1}{t(t+1)} dt
\]
Essendo, inoltre:
\[
\frac{1}{t(t+1)} = \frac{A}{t} + \frac{B}{t+1} = \frac{A(t+1) + Bt}{t(t+1)} = \frac{(A+B)t + A}{t(t+1)}
\]
da cui:
\[
\begin{align*}
 A + B &= 0 \\
 A &= 1 \\
 B &= -1
\end{align*}
\]
ne segue che:
\[
\int \frac{dx}{1 + e^{2x}} = \frac{1}{2} \int \frac{1}{t(t+1)} dt = \frac{1}{2} \int \frac{1}{t} dt - \frac{1}{2} \int \frac{1}{t+1} dt = \frac{1}{2} \log|t| - \frac{1}{2} \log|t+1| + C = \frac{1}{2} \log\left|\frac{t}{t+1}\right| + C
\]

SECONDO CASO

(5) \[
\int R \left[x, a^{\left(\frac{m}{n_1}\right)^x}, a^{\left(\frac{m}{n_2}\right)^x}, \ldots, a^{\left(\frac{m}{n_r}\right)^x} \right] dx
\]

con \(a > 0, \ a \neq 1 \) costante ed \(\frac{m_1}{n_1}, \frac{m_2}{n_2}, \ldots, \frac{m_r}{n_r} \) numeri razionali noti che supporremo, per comodità, ridotti ai minimi termini. Indicato, quindi, con \(\mu \) il minimo comune multiplo dei numeri (positivi) \(n_1, n_2, \ldots, n_r \), attraverso la sostituzione:

(5.1) \[
a^x = t^\mu
\]

gli integrali considerati si trasformano negli integrali di funzioni razionali di \(t \).

In particolare:

\[
a = e \quad \Rightarrow \quad \int R \left[x, e^{\left(\frac{m}{n_1}\right)^x}, e^{\left(\frac{m}{n_2}\right)^x}, \ldots, e^{\left(\frac{m}{n_r}\right)^x} \right] dx
\]

ESEMPIO

\[
\beta) \quad \int \frac{2\sqrt{2}}{1-2\sqrt{5}} \ dx
\]

Essendo:
\[
\frac{m_1}{n_1} = \frac{1}{2}, \quad \frac{m_2}{n_2} = \frac{1}{3}, \quad a = 2 \quad \Rightarrow \quad \mu = \text{m.c.m.}(n_1, n_2) = \text{m.c.m.}(2, 3) = 6
\]
e ponendo, per la (5.1):
\[
2^x = t^\mu \quad (t > 0) \quad \Rightarrow \quad x = \log_2 t^\mu = 6 \log_2 t \quad \Rightarrow \quad dx = \frac{6}{t \ln 2} dt
\]
si ottiene:
\[
\int \frac{2\sqrt{2}}{1-2\sqrt{5}} \ dx = \int \frac{(t^6)^{1/2}}{1-(t^6)^{1/2}} \ dt = 6 \int \frac{t^3}{1-t^2} \ dt = 6 \int \frac{1}{t \ln 2} \ dt = 6 \int \frac{t^2}{1-t^2} \ dt =
\]

37
\[
\frac{6}{\ln 2} \int \frac{t^2 + 1 - 1}{1 - t^2} dt = \frac{6}{\ln 2} \int \frac{-t^2 + 1 - 1}{-1 - t^2} dt = \frac{6}{\ln 2} \int \frac{-t^2 - 1 + 1}{1 - t^2} dt = \\
= -\frac{6}{\ln 2} \left[\int \frac{-t^2 + 1}{1 - t^2} dt - \int \frac{dt}{1 - t^2} \right] = -\frac{6}{\ln 2} \left[\int dt - \int \frac{dt}{(1-t)(1+t)} \right] = \\
= -\frac{6t}{\ln 2} + \frac{6}{\ln 2} \int \frac{dt}{(1-t)(1+t)}
\]

Resta da calcolare ora solo l’integrale a secondo membro.
Si ha, quindi:
\[
\frac{1}{(1-t)(1+t)} = \frac{A}{1-t} + \frac{B}{1+t} = \frac{A(1+t) + B(1-t)}{(1-t)(1+t)} = \frac{(A-B)t + A + B}{(1-t)(1+t)}
\]
da cui:
\[
\begin{aligned}
A - B &= 0 \\
A + B &= 1
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
A &= \frac{1}{2} \\
B &= \frac{1}{2}
\end{aligned}
\]
Dunque:
\[
\int \frac{2^{\sqrt{2}}}{1 - 2^{\sqrt{2}}} dx = -\frac{6t}{\ln 2} + \frac{6}{2\ln 2} \left(-\log |1-t| + \log |1+t| \right) + c = \\
= -\frac{6t}{\ln 2} - \frac{3}{\ln 2} \left(\log |1-t| - \log |1+t| \right) + c = -\frac{6t}{\ln 2} - \frac{3}{\ln 2} \left(\log \frac{1-t}{1+t} \right) + c = \\
= -\frac{6\sqrt{2}}{\ln 2} - \frac{3}{\ln 2} \left(\log \frac{1-\sqrt{2}t}{1+\sqrt{2}t} \right) + c
\]

TERZO CASO

(6) \[\int R(\sin x, \cos x) dx \]

Posto, in tal caso:
(6.1) \[\tan \frac{x}{2} = t \quad \Rightarrow \quad x = 2\arctg t \quad \Rightarrow \quad dx = \frac{2}{1+t^2} dt \]
e ricordando (cfr. formule di duplicazione) che:
l'integrale di partenza si trasforma nell'integrale di una funzione razionale di t.

Più in generale ci si può trovare di fronte ad integrali del tipo:

$$\int R[\sin(\alpha x + \beta), \cos(\alpha x + \beta)]dx$$

con α, β costanti non nulle: com’è facile verificare con gli esempi che seguono tali integrali sono riconducibili al tipo (6) effettuando su di essi la sostituzione:

$$\alpha x + \beta = z$$

ESEMPI

$\gamma) \quad \int \frac{dx}{\sin x}$

Posto, per la (6.1):

$$\tan \frac{x}{2} = t \Rightarrow x = 2 \arctg t \Rightarrow dx = \frac{2}{1 + t^2}dt$$

si ottiene, in virtù delle (6.2):

$$\int \frac{dx}{\sin x} = \int \frac{1 + t^2}{2t} \cdot \frac{2}{1 + t^2}dt = \int \frac{1}{t} dt = \log|t| + c = \log \left|\tan \frac{x}{2}\right| + c$$

$\delta) \quad \int \frac{dx}{\cos x}$

Posto, per la (6.1):

$$\tan \frac{x}{2} = t \Rightarrow x = 2 \arctg t \Rightarrow dx = \frac{2}{1 + t^2}dt$$

si ottiene, in virtù delle (6.2) e dell'esercizio $\beta)$:

$$\int \frac{dx}{\cos x} = \int \frac{1 + t^2}{1 - t^2} \cdot \frac{2}{1 + t^2}dt = 2 \int \frac{1}{1 - t^2}dt = 2 \left(-\frac{1}{2} \log|1 - t| + \frac{1}{2} \log|1 + t| \right) + c =$$

$$= -\log|1 - t| + \log|1 + t| + c = \log \left|\frac{1 + t}{1 - t}\right| + c = \log \left|\tan \frac{x}{2}\right| + c$$

39

\[e) \int \frac{dx}{1 + \sin x} \]

Effettuando la sostituzione (6.1):

\[\tan \frac{x}{2} = t \Rightarrow x = 2 \arctg t \Rightarrow dx = \frac{2}{1 + t^2} dt \]

si ottiene, in virtù delle (6.2):

\[
\int \frac{dx}{1 + \sin x} = \int \frac{1}{1 + \frac{2t}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt = \int \frac{1 + t^2}{1 + t^2 + 2t} \cdot \frac{2}{1 + t^2} dt = 2 \int \frac{1}{(t + 1)^2} dt = -\frac{2}{t + 1} + c = \\
= -\frac{2}{\tan \frac{x}{2} + 1} + c
\]

\[\zeta) \int \frac{dx}{1 - \cos x} \]

Effettuando la sostituzione (6.1):

\[\tan \frac{x}{2} = t \Rightarrow x = 2 \arctg t \Rightarrow dx = \frac{2}{1 + t^2} dt \]

si ottiene, in virtù delle (6.2):

\[
\int \frac{dx}{1 - \cos x} = \int \frac{1}{1 - \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt = \int \frac{1 + t^2}{1 + t^2 - 1 + t^2} \cdot \frac{2}{1 + t^2} dt = 2 \int \frac{1}{2t^2} dt = \int \frac{1}{t^2} dt = \\
= -\frac{1}{t} + c = -\frac{1}{\tan \frac{x}{2}} + c = \frac{1}{\cotg \frac{x}{2}} + c
\]

QUARTO CASO

(7) \[\int R(\cos x) \sin x dx \]

(8) \[\int R(\sin x) \cos x dx \]

In generale, per risolvere tali integrali è opportuno ricorrere, rispettivamente, alla sostituzione:

(7.1) \[\cos x = t \]

(8.1) \[\sin x = t \]

ottenendo, così, i seguenti integrali di una funzione razionale di t:

(7') \[- \int R(t) dt \]

40
Osservazione. Per il calcolo degli integrali (7) ed (8) è possibile utilizzare anche il procedimento illustrato nel Terzo Caso.

ESEMPI

\[\eta) \int \frac{\sin x}{\cos^3 x} \, dx \]

In virtù della (7.1) si ha:

\[\cos x = t \quad \Rightarrow \quad \sin x \, dx = -d(\cos x) = -dt \]

Quindi:

\[\int \frac{\sin x}{\cos^3 x} \, dx = \int -\frac{dt}{t^3} = -\int \frac{dt}{t^3} = -\frac{1}{2t^2} + c = \frac{1}{2\cos^2 x} + c \]

\[\theta) \int \frac{\cos x}{\sin^2 x + 3\sin x + 8} \, dx \]

In virtù della (8.1) si ha:

\[\sin x = t \quad \Rightarrow \quad \cos x \, dx = d(\sin x) = dt \]

Quindi:

\[\int \frac{\cos x}{\sin^2 x + 3\sin x + 8} \, dx = \int \frac{dt}{t^2 + 3t + 8} = \frac{1}{\sqrt{23}} \arctg \frac{t + \frac{3}{2}}{\sqrt{23}} + c = \frac{2}{\sqrt{23}} \arctg \frac{2t + 3}{\sqrt{23}} + c = \frac{2\sqrt{23}}{23} \arctg \frac{2t + 3}{\sqrt{23}} + c = \frac{2\sqrt{23}}{23} \arctg \frac{2\sin x + 3}{\sqrt{23}} + c \]

QUINTO CASO

\[(9) \int R(\tan x) \, dx \]

\[(10) \int R(\cotan x) \, dx \]

\[(11) \int R(\tan x, \cotan x) \, dx \]

In generale, per risolvere tali integrali, risulta conveniente eseguire la sostituzione:

\[(9.1) \tan x = t \]

\[(10.1) \cotan x = t \]
Osservazione. Per il calcolo degli integrali (9), (10) ed (11) è possibile utilizzare anche il procedimento illustrato nel **TERZO CASO**, ricordando che:

\[
\tan x = \frac{\sin x}{\cos x} \quad e \quad \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}
\]

ESEMPIO

1) \(\int \frac{\tan^3 x + \tan x}{\tan x + 4} \, dx\)

In virtù della (9.1) si ha:

\[\tan x = t \quad \Rightarrow \quad x = \arctan t \quad \Rightarrow \quad dx = \frac{1}{1 + t^2} \, dt\]

Quindi:

\[
\int \frac{\tan^3 x + \tan x}{\tan x + 4} \, dx = \int \frac{t^3 + t}{1 + t^2} \, dt = \int \frac{t(t^2 + 1)}{(t + 4)(1 + t^2)} \, dt = \int \frac{t}{t + 4} \, dt = \int \frac{t + 4 - 4}{t + 4} \, dt =
\]

\[= \int dt - 4 \int \frac{dt}{t + 4} = t - 4 \log |t + 4| + c = \tan x - 4 \log |\tan x + 4| + c\]

SESTO CASO

(12) \(\int R(\sin^2 x, \cos^2 x, \tan x, \cot x) \, dx\)

In generale, per risolvere tali integrali risulta conveniente eseguire la sostituzione:

(12.1) \(\tan x = t \quad \Rightarrow \quad x = \arctan t \quad \Rightarrow \quad dx = \frac{dt}{1 + t^2}\)

Ricordando poi che:

(12.2)

\[
\begin{aligned}
\sin^2 x &= \frac{\tan^2 x}{1 + \tan^2 x} = \frac{t^2}{1 + t^2} \\
\cos^2 x &= \frac{1}{1 + \tan^2 x} = \frac{1}{1 + t^2}
\end{aligned}
\]

si ottengono gli integrali di una funzione razionale di \(t\):

\[
\int R\left(\frac{t^2}{1 + t^2}, \frac{1}{1 + t^2}, \frac{1}{t}, \frac{1}{1 + t^2}\right) \, dt
\]

Osservazione. Per il calcolo degli integrali (12) si può procedere anche come fatto per gli integrali di tipo (6).
ESEMPIO

κ) \(\int \frac{\tan x}{\sin^2 x + 1} \, dx \)

In virtù della (12.1) si ha:

\[\tan x = t \quad \Rightarrow \quad x = \arctg t \quad \Rightarrow \quad dx = \frac{1}{1+t^2} \, dt \]

da cui, tenendo conto anche delle (12.2):

\[
\int \frac{\tan x}{\sin^2 x + 1} \, dx = \int \frac{t}{1+t^2} \cdot \frac{1}{1+t^2} \, dt = \int \frac{t(t^2+1)}{(2t^2+1)(1+t^2)} \, dt = \int \frac{t}{2t^2+1} \, dt = \int \frac{4t}{4(2t^2+1)} \, dt =
\]

\[= \frac{1}{4} \int \frac{4t}{2t^2+1} \, dt = \frac{1}{4} \log(2t^2+1) + c = \frac{1}{4} \log(2\tan^2 x + 1) + c \]

SETTIMO CASO

(13) \(\int \sin (mx) \cos (nx) \, dx \)

(14) \(\int \sin (mx) \sin (nx) \, dx \)

(15) \(\int \cos (mx) \cos (nx) \, dx \)

con \(m, n \) costanti ed \(m \neq \pm n \). Analizzeremo semplicemente l’integrale (13) poiché gli altri si comportano in maniera analoga. Dalle ben note formule di Werner è possibile trasformare il prodotto \(\sin (mx) \cos (nx) \) in una somma.

Precisamente, essendo:

\[\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2} \]

segue che:

\[\sin (mx) \cos (nx) = \frac{1}{2} \left[\sin (m+n) x + \sin (m-n) x \right] \]

da cui risulta:

\[\int \sin (mx) \cos (nx) \, dx = \frac{1}{2} \int \sin [(m+n) x] \, dx + \frac{1}{2} \int \sin [(m-n) x] \, dx \]

per cui, essendo \(m \neq \pm n \), si ottiene:

(13.1) \(\int \sin (mx) \cos (nx) \, dx = -\frac{\cos [(m+n) x]}{2(m+n)} - \frac{\cos [(m-n) x]}{2(m-n)} + c \)
\[
(13.2) \quad \int \cos(mx)\sin(nx) \, dx = -\frac{\cos[(m+n)x]}{2(m+n)} + \frac{\cos[(m-n)x]}{2(m-n)} + c
\]
\[
(13.3) \quad \int \sin(mx)\sin(nx) \, dx = -\frac{\sin[(m+n)x]}{2(m+n)} + \frac{\sin[(m-n)x]}{2(m-n)} + c
\]
\[
(13.4) \quad \int \cos(mx)\cos(nx) \, dx = \frac{\sin[(m+n)x]}{2(m+n)} + \frac{\sin[(m-n)x]}{2(m-n)} + c
\]

Per \(m = n\) invece, si ha:
\[
\int \sin(mx)\cos(mx) \, dx = \frac{\sin^2(mx)}{2m} + c
\]

Per \(m = -n\), si ha ancora:
\[
\int \sin(mx)\cos(mx) \, dx = \frac{\sin^2(mx)}{2m} + c
\]

ESEMPI

\(\lambda\) \quad \int \sin 5x\cos 3x \, dx

In virtù della (13.1) e tenendo conto che \(m = 5 \neq n = 3\), si ha:
\[
\int \sin 5x\cos 3x \, dx = \frac{\cos(5+3)x}{2(5+3)} - \frac{\cos(5-3)x}{2(5-3)} + c = \frac{\cos 8x}{16} - \frac{\cos 2x}{4} + c
\]

\(\mu\) \quad \int \sin 6x\sin 9x \, dx

In virtù della (13.3) e tenendo conto che \(m = 6 \neq n = 9\), si ha:
\[
\int \sin 6x\sin 9x \, dx = \frac{\sin(6-9)x}{2(6-9)} - \frac{\sin(6+9)x}{2(6+9)} + c = \frac{\sin 3x}{6} - \frac{\sin 15x}{30} + c
\]

\(\nu\) \quad \int \cos 4x\cos 8x \, dx

In virtù della (13.4) e tenendo conto che \(m = 4 \neq n = 8\), si ha:
\[
\int \cos 4x\cos 8x \, dx = \frac{\sin(8+4)x}{2(8+4)} + \frac{\sin(4-8)x}{2(4-8)} + c = \frac{\sin 12x}{24} + \frac{\sin 4x}{8} + c
\]
OTTAVO CASO

\[(16) \quad \int \sin^m x \cos^n x \, dx \]

con \(m, n \) razionali. Attraverso la sostituzione:

\[(16.1) \quad \sin x = t \quad \text{oppure} \quad \cos x = t \]

l'integrale (16) si trasforma, con semplici calcoli, in uno degli integrali analizzati nel QUARTO CASO. Per valori particolari di \(m \) ed \(n \) l'integrale (16), comunque, è proprio uno degli integrali analizzati nei casi precedenti.

ESEMPIO

0) \[\int \frac{\sin^4 x}{\cos x} \, dx \]

Poniamo:

\[\sin x = t \quad \Rightarrow \quad x = \arcsin t \quad \Rightarrow \quad dx = \frac{dt}{\sqrt{1-t^2}} \quad \Rightarrow \quad \cos x = \sqrt{1-\sin^2 x} = \sqrt{1-t^2} \]

da cui segue:

\[\int \frac{\sin^4 x}{\cos x} \, dx = \int \frac{t^4}{\sqrt{1-t^2}} \cdot \frac{dt}{\sqrt{1-t^2}} = \int \frac{t^4}{1-t^2} \, dt \]

Per calcolare l'integrale che figura al secondo membro occorre effettuare, in primo luogo, la divisione tra i due polinomi, essendo il grado del numeratore maggiore di quello del denominatore:

\[\int \frac{\sin^4 x}{\cos x} \, dx = \int \frac{t^4}{1-t^2} \, dt = \int (-t^2 - 1) \, dt + \int \frac{1}{1-t^2} \, dt = -\frac{t^3}{3} - t + \int \frac{1}{(1-t)(1+t)} \, dt = -\frac{t^3}{3} - t - \frac{1}{2} \log |1-t| + \frac{1}{2} \log |1+t| + c = -\frac{\sin^3 x}{3} - \sin x - \frac{1}{2} \log |\sin x| + \frac{1}{2} \log |\sin x| + c \]

Osservazione 1. Per il calcolo dell'integrale al secondo membro si confronti l'esercizio β).

Osservazione 2. L'integrale 0) poteva essere risolto anche utilizzando la sostituzione (6.1).